CMSC 330: Organization of Programming Languages

Finite Automata 2

Last Lecture

- Finite automata
 - Alphabet, states...
 - ($\Sigma, Q, q_0, F, \delta$)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

Reducing RE to NFA

- Concatenation
- Union
- Closure

This Lecture

- Reducing NFA to DFA
 - ε-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works

- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ε-transitions
- Example
 - After processing "a"
 - NFA may be in states
 - S_1
 - S_2
 - S_3

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Reducing NFA to DFA (cont.)

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA ($\Sigma, Q, q_0, F_n, \delta$)
 - Output
 - DFA ($\Sigma, R, r_0, F_d, \delta$)
 - Using
 - ε-closure(p)
 - move(p, a)
ε-transitions and ε-closure

- We say $p \xrightarrow{\varepsilon} q$
 - If it is possible to go from state p to state q by taking only ε-transitions
 - If $\exists \ p, p_1, p_2, \ldots, p_n, q \in Q \text{ such that } (p, \varepsilon, p_1) \in \delta, (p_1, \varepsilon, p_2) \in \delta, \ldots, (p_n, \varepsilon, q) \in \delta$

ε-closure(p)

- Set of states reachable from p using ε-transitions alone
 - Set of states q such that $p \rightarrow q$
 - ε-closure(p) = $\{q \mid p \rightarrow q\}$

Note

- ε-closure(p) always includes p
- ε-closure() may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - $S_1 \xrightarrow{\varepsilon} S_2$
 - $S_2 \xrightarrow{\varepsilon} S_3$
 - $S_1 \xrightarrow{a} S_3$

ε-closures

- ε-closure(S_1) = $\{S_1, S_2, S_3\}$
- ε-closure(S_2) = $\{S_2, S_3\}$
- ε-closure(S_3) = $\{S_3\}$
- ε-closure($\{S_1, S_2\}$) = $\{S_1, S_2, S_3\} \cup \{S_2, S_3\}$

ε-closure: Example 2

- Following NFA contains
 - $S_1 \xrightarrow{\varepsilon} S_3$
 - $S_3 \xrightarrow{a} S_2$
 - $S_1 \xrightarrow{a} S_2$

ε-closures

- ε-closure(S_1) = $\{S_1, S_2, S_3\}$
- ε-closure(S_2) = $\{S_2\}$
- ε-closure(S_3) = $\{S_2, S_3\}$
- ε-closure($\{S_2, S_3\}$) = $\{S_2\} \cup \{S_2, S_3\}$

ε-closure: Practice

- Find ε-closures for following NFA
- Find ε-closures for the NFA you construct for
 - The regular expression $(0|1^*)111(0^*|1)$

ε-closure: Practice

- Find ε-closures for following NFA
- Find ε-closures for the NFA you construct for
 - The regular expression $(0|1^*)111(0^*|1)$

Calculating move(p,a)

- move(p,a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that $(p, a, q) \in \delta$
 - move(p,a) = $\{q \mid (p, a, q) \in \delta\}$
 - Note move(p,a) may be empty \emptyset
 - If no transition from p with label a

move(a,p): Example 1

- Following NFA
 - $\Sigma = \{a, b\}$

Move

- move(S_1, a) = $\{S_2, S_3\}$
- move(S_1, b) = \emptyset
- move(S_2, a) = \emptyset
- move(S_2, b) = $\{S_3\}$
- move(S_3, a) = \emptyset
- move(S_3, b) = \emptyset
move(a,p) : Example 2

Following NFA
- $\Sigma = \{a, b\}$

Move
- $\text{move}(S_1, a) = \{S_2\}$
- $\text{move}(S_1, b) = \{S_3\}$
- $\text{move}(S_2, a) = \{S_3\}$
- $\text{move}(S_2, b) = \emptyset$
- $\text{move}(S_3, a) = \emptyset$
- $\text{move}(S_3, b) = \emptyset$

NFA \rightarrow DFA Reduction Algorithm

Input NFA $(\Sigma, Q, q_0, F_n, \delta)$, Output DFA $(\Sigma, R, r_0, F_d, \delta)$

Algorithm
- Let $r_0 = \varepsilon$-closure(q_0), add it to R // DFA start state
- While \exists an unmarked state $r \in R$ // process DFA state r
 - Mark r // each state visited once
 - For each $a \in \Sigma$ // for each letter a
 - Let $S = \{s \mid q \in r \& \text{move}(q,a) = s\}$ // states reached via a
 - Let $e = \varepsilon$-closure(S) // states reached via ε
 - If $e \not\in R$ // if state e is new
 - Let $R = e \cup R$ // add e to R (unmarked)
 - Let $\delta = \delta \cup \{r, a, e\}$ // add transition $r \rightarrow e$
 - Let $F_d = \{r \mid \exists s \in r \& s \in F_n\}$ // final if include state in F_n

NFA \rightarrow DFA Example 1

- Start = ε-closure$(S_1) = \{\{S_1, S_3\}\}$
- $R = \{\{S_1, S_3\}\}$
- $r \in R = \{S_1, S_3\}$
- $\text{Move}(\{S_1, S_3\}, a) = \{S_2\}$
 - $e = \varepsilon$-closure$(S_2) = \{S_2\}$
 - $R = R \cup \{S_2\} = \{\{S_1, S_3\}, \{S_2\}\}$
 - $\delta = \delta \cup \{\{S_1, S_3\}, \{S_2\}\}$
- $\text{Move}(\{S_1, S_3\}, b) = \emptyset$

NFA \rightarrow DFA Example 1 (cont.)

- $R = \{\{S_1, S_3\}, \{S_2\}\}$
- $r \in R = \{S_2\}$
- $\text{Move}(\{S_2\}, a) = \emptyset$
- $\text{Move}(\{S_2\}, b) = \emptyset$
- $\delta = \delta \cup \{\{S_1, S_3\}, \{S_2\}\}$
- $\delta = \delta \cup \{\{S_2\}, \{S_3\}\}$
- $F_d = \{\{S_1, S_3\}, \{S_3\}\}$
 - Since $S_3 \in F_n$
 - Done!

NFA \rightarrow DFA Example 2

- $R = \{[A], [B, D], [C, D]\}$

NFA \rightarrow DFA Example 1 (cont.)

- $R = \{\{S_1, S_3\}, \{S_2\}, \{S_3\}\}$
- $r \in R = \{S_3\}$
- $\text{Move}(\{S_3\}, a) = \emptyset$
- $\text{Move}(\{S_3\}, b) = \emptyset$
- $F_d = \{\{S_1, S_3\}, \{S_3\}\}$
 - Since $S_3 \in F_n$
 - Done!
NFA → DFA Example 3

\[R = \{(A,E), (B,D,E), (C,D), (E)\} \]

Equivalence of DFAs and NFAs

Any string from \(\{A\} \) to either \(\{D\} \) or \(\{CD\} \)

- Represents a path from \(A \) to \(D \) in the original NFA

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
 - In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input

- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \(\{S,T,U,V\} \)
 - All transitions on a lead to identical partition \(P2 \)
 - Even though transitions on a lead to different states
Splitting Partitions (cont.)
- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from R lead to partition P3

DFA Minimization Algorithm (1)
- Input DFA (∑, Q, q0, F, δ)
- Output DFA (∑, R, r0, F, δ)
- Algorithm
 - Let p0 = F, p1 = Q - F, R = \{ p | p \in \{p0,p1\} and p \neq ∅ \}, P = ∅
 - While P \neq R do
 - Let P = R, R = ∅
 - For each p \in P
 - For each s \in p
 - For each c \in ∑
 - If δ(r,c) = q0 and δ(s,c) = q1 and there is no p1 \in P such that q0 \in p1 and q1 \in p1
 - Then
 - m = m \cup \{s\}
 - Return p - m, m

Minimizing DFA: Example 1
- DFA
- Initial partitions
 - Accept \{ R \} → P1
 - Reject \{ S, T \} → P2
- Split partition? → Not required, minimization done
 - move(S,a) = T → P2
 - move(S,b) = R → P1
 - move(T,a) = T → P2
 - move(T,b) = R → P1
- After cleanup

Minimizing DFA: Example 2
- DFA
- Initial partitions
 - Accept \{ R \} → P1
 - Reject \{ S, T \} → P2
- Split partition? → Not required, minimization done
 - move(S,a) = T → P2
 - move(S,b) = R → P1
 - move(T,a) = S → P2
 - move(T,b) = R → P1
- After cleanup
Minimizing DFA: Example 3

- **DFA**

 ![DFA Diagram](image)

 - Initial partitions
 - Accept: \(\{ R \} \) → P1
 - Reject: \(\{ S, T \} \) → P2

 - Split partition? → Yes, different partitions for B
 - \(\text{move}(S, a) = T \rightarrow P2 \)
 - \(\text{move}(S, b) = T \rightarrow P2 \)
 - \(\text{move}(T, a) = T \rightarrow P2 \)
 - \(\text{move}(T, b) = R \rightarrow P1 \)

Complement of DFA

- Given a DFA accepting language \(L \)
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{a, b\} \)

 ![Complement DFA](image)

Complement of DFA (cont.)

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state
 - Every non-accepting state to an accepting state

- Note this only works with DFAs
 - Why not with NFAs?

Practice

Make the DFA which accepts the complement of the language accepted by the DFA below.

![Practice DFA](image)

Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

![Reducing DFAs](image)

Relating REs to DFAs and NFAs

- Why do we want to convert between these?
 - Can make it easier to express ideas
 - Can be easier to implement

![Relating REs](image)
Implementing DFAs

It's easy to build a program which mimics a DFA

```c
int cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '
': printf("rejected
"), return 0;
            default: printf("rejected
"), return 0;
        }
        break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '
': printf("accepted
"), return 1;
            default: printf("rejected
"), return 0;
        }
        break;
        default: printf("unknown state; I'm confused
");
        break;
    }
}
```

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

```c
given components (Σ, Q, q, f, δ) of a DFA:
let q = q0;
while (there exists another symbol s of the input string)
    q := δ(q, s);
if q ∈ F then accept
else reject
```

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute δ(q, c) in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing DFA for RE A may take O(2^|A|) time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of (Σ, Q, qA, fA, δA), the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA
 - Convert to an NFA and then to a DFA
 - (0|1)*11|0*
 - Strings of alternating 0 and 1
 - aba*|(ba|b)

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation