CMSC 330: Organization of Programming Languages

Project 5
Multithreaded Metro Simulation

Goals

1. Implement simulation display
 • Examine log file of simulation events
 • Display state of simulation

2. Implement multithreaded simulation
 • Separate threads for trains, passengers
 • Use synchronization to avoid data races
 • Use wait / notify for efficiency

Metro Simulation

- You are given
 • List of metro lines & stations on each line
 • List of passengers & their stops
 • Parser for reading simulation parameters / events
 • Code for printing simulation events

- You need to simulate
 • Trains moving along metro line
 • Passengers boarding / exiting trains

Simulation Parameters

- Format
 === Lines ===
 <color>, <station 1>, <station 2>…
 === Trains ===
 <color>=<num>
 === Passengers ===
 <name>, <station 1>, <station 2>…
 === Output ===
 <event>

Example

=== Lines ===
Red, Glenmont, Silver Spring, Bethesda
=== Trains ===
Red=1
=== Passengers ===
Amy, Silver Spring, Bethesda
=== Output ===

Simulation Events

- Format
 • Train <color, #> entering <station>
 • Train <color, #> leaving <station>
 • <Passenger> boarding train <color, #> at <station>
 • <Passenger> leaving train <color, #> at <station>
Simulation Events

- Example
 - Train Green 1 leaving Fort Totten
 - Train Blue 1 entering L'Enfant Plaza
 - Train Red 1 entering Fort Totten
 - Train Yellow 1 entering Pentagon
 - Paul boarding train Yellow 1 at Pentagon
 - Train Green 1 entering Gallery Place
 - Train Red 1 leaving Fort Totten
 - Paul boarding train Yellow 1 at Pentagon
 - Train Yellow 1 leaving L'Enfant Plaza
 - Train Red 1 leaving Fort Totten

Simulation Display

- Read simulation events & display state of metro
 - List metro line name, followed by stations on line
 - List passengers waiting at each station
 - List train at each station (and its passengers)

- Example
 - Red
 - Glenmont [Red 2 Ann]
 - Silver Spring [Red 1]
 - Bethesda

Metro Simulation

- Multithreading
 - One thread per train
 - One thread per passenger

- Synchronization
 - Single train (from metro line) at station at a time
 - Passengers only board / exit when train is in station
 - Use enough locks to permit concurrent execution
 - Use wait / notify to avoid busy waiting

Simulation Rules

- Trains
 - Start by entering 1st station in metro line
 - Travel back and forth between 1st and last station
 - Stopping at all metro stations on line in order
 - For each metro line
 - May have multiple trains
 - Only one train in station at a time (regardless of travel direction)
 - Trains from different metro lines may be at same station
 - If no passengers in simulation
 - Each train must make at least 1 round trip from 1st station to last station and back to 1st station

- Passengers
 - Start at 1st station on list of stops
 - Board & leave trains only when train is at station
 - Possible to miss train
 - Take future train
 - May board trains going in either direction
 - May change metro lines
 - If multiple lines at station

Simulation Rules

- Simulation completes
 - When all passengers reach destinations
 - Trains are allowed to continue moving a bit more
 - If no passengers in simulation
 - Each train must make at least 1 round trip
 - Go from 1st station to last station and back to 1st station