Problem solving and search

CMSC 421: Chapter 3
Motivation and Outline

Lots of AI problem-solving requires trial-and-error search
Chapter 3 describes some algorithms for this

♦ Types of problems and agents
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms
Problem types

Deterministic, fully observable ⇒ *classical search problem*

- agent knows exactly which state it starts in, what each action does
- no exogenous events (or else they’re encoded into the actions’ effects)
- solution is a sequence, can predict future states exactly

E.g., Vacuum World with **no** exogenous events
(hence, rooms won’t spontaneously get dirty again)

Initial state:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goal: have both rooms clean

Solution: `[Suck, Right, Suck]`
Problem types

Non-observable

◊ Agent may have no idea where it is
◊ solution (if any) is a sequence that is conformant, i.e., guaranteed to work under all conditions

E.g., Vacuum World, no exogenous events and no sensors

Start in any of \(\{1, 2, 3, 4, 5, 6, 7, 8\} \)

Goal: have both rooms clean

Assume hitting the wall causes no harm

\(\text{Left} \) goes to \(\{1, 3, 5, 7\} \)
\(\text{Right} \) goes to \(\{2, 4, 6, 8\} \)

Solution: \([\text{Right}, \text{Suck}, \text{Left}, \text{Suck}]\)
Problem types

Nondeterministic and/or partially observable

◊ percepts provide new information about current state
◊ solution is a contingent plan or a policy
◊ often interleave search, execution

E.g., Vacuum World, no exogenous events, and local sensing:
 which room the agent’s in
 and whether that room is dirty

Start in any of \{5, 6, 7, 8\}

Goal: have both rooms clean

Solution: \([Right, \text{if dirt then Suck}]\)

Unknown state space \(\implies\) exploration problem (don’t have example)
Problem-solving agents

Online problem solving: gather knowledge as you go
 Necessary for exploration problems
 Can be useful in nondeterministic and partially observable problems

Offline problem solving: develop the entire solution at the start, before you ever start to execute it
 e.g., the solutions for the Vacuum World examples on the last three slides

Focus of this chapter: *offline* problem solving for *classical search problems* (i.e., deterministic, fully observable)
Example: Romania

Currently in Arad, Romania; flight leaves tomorrow from Bucharest
states = cities; actions = drive between cities; goal = be in Bucharest
Selecting a state space

Real world is absurdly complex
⇒ state space must be **abstracted** for problem solving

♦ **Abstract state** = set of real states
e.g., the state in-Arad includes lots of locations

♦ **Abstract action** = complex combination of real actions
e.g., goto-Zerind may include possible routes, detours, rest stops, etc. For guaranteed realizability, it must get you to Zerind no matter where you are in Arad

♦ **Abstract solution** = sequence of abstract actions
It represents a set of real paths that are solutions in the real world
Formulation of classical search problems

A problem consists of:

♦ initial state s_0, e.g., at-Arad

♦ set of actions, e.g., $A = \{\text{goto-Zerind}, \ldots\}$

♦ state-transition function $\gamma(s, a)$, e.g., $\gamma(\text{at-Arad}, \text{goto-Zerind}) = \text{at-Zerind}, \ldots$

♦ goal test can be explicit, e.g., set of goal states $= \{\text{at-Bucharest}\}$ or implicit, e.g., $\text{NoDirt}(s)$

♦ path cost (additive), e.g., sum of distances, number of actions executed, etc. $c(s, a)$ is the step cost, assumed to be ≥ 0

solution: sequence of actions leading from the initial state to a goal state
Example: vacuum world, no exogenous events

states: dirt and robot locations (ignore dirt *amounts* etc.)

actions: *Left, Right, Suck, NoOp*

goal test: no dirt

path cost: 1 per action (0 for *NoOp*)
Example: sliding-tile puzzles

$n \times n$ frame, $n^2 - 1$ movable tiles. Slide the tiles to change their positions.

$n = 3$: the 8-puzzle

$n = 4$: the 15-puzzle

a starting state goal state a starting state goal state

- **states**: integer locations of tiles (ignore intermediate positions)
- **actions**: move tiles left, right, up, down (ignore unjamming etc.)
- **goal test** = goal state (shown)
- **step cost** = 1 per move, so **path cost** = number of moves

In this family of puzzles, finding optimal solutions is NP-hard
Easier if we don’t care whether the solution is optimal
Example: robotic assembly

states: real-valued coordinates of robot joint angles
- parts of the object to be assembled

actions: continuous motions of robot joints

goal test: complete assembly

path cost: time to execute
Tree search algorithms

Basic idea:
offline, simulated exploration of state space

function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end

node: includes state s, parent, children, depth, path cost g(s)
expanding a node: generating all of its children
fringe or frontier = \{all candidates for expansion\}
= \{all nodes that have been generated but not expanded\}
Tree search example

Currently in Arad, Romania; flight leaves tomorrow from Bucharest
states = cities; actions = drive between cities; goal = be in Bucharest
Tree search example
Tree search example
Tree search example
Implementation: states vs. nodes

- A state is a (representation of) a physical configuration.
- A node x is a data structure that’s part of a search tree. It includes state s, parent, children (if s has been expanded), depth, path cost $g(x)$.
- The states themselves don’t have parents, children, depth, or path cost.

- The `Expand` function creates new nodes:
 - uses the state-transition function γ to generate the states for x’s children: $\{\gamma(s, a) : a \text{ is applicable to } s\}$
 - fills in the various fields.
Search strategies

A strategy is defined by picking the **order of node expansion**

Ways to evaluate a strategy:

- **completeness**: does it always find a solution if one exists?
- **optimality**: does it always find a least-cost solution?
- **time complexity**: number of nodes generated/expanded
- **space complexity**: maximum number of nodes in memory

Time and space complexity are measured in terms of

- $b =$ maximum branching factor of the search tree; we’ll assume it’s finite
- $d =$ depth of the least-cost solution (or ∞ if there’s no solution)
- $m =$ maximum depth of the state space (may be ∞)
Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

- Breadth-first search
- Depth-first search
- Depth-limited search
- Uniform-cost search
- Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

![Breadth-first search diagram]
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

![Diagram of a breadth-first search tree](image-url)
Breadth-first search

Expand shallowest unexpanded node

Implementation:

`fringe` is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete?

- \(b = \) maximum branching factor of the search tree
- \(d = \) depth of the least-cost solution
- \(m = \) maximum depth of the state space (may be \(\infty \))
Properties of breadth-first search

Complete? Yes

Time?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty \text{)} \]
Properties of breadth-first search

Complete? Yes

Time? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^d),\) i.e., exp. in \(d\)

Space?
Properties of breadth-first search

Complete? Yes

Time? \[1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^d), \text{ i.e., exp. in } d\]

Space? \(O(b^d)\) (keeps every node in memory)

This is a big problem. If we run for 24 hours and generate nodes at 100MB/sec, the space requirement is 8.64 TB

Optimal solutions?

\[b = \text{maximum branching factor of the search tree}\]
\[d = \text{depth of the least-cost solution}\]
\[m = \text{maximum depth of the state space (may be } \infty)\]
Properties of breadth-first search

Complete? Yes

Time? \[1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^d), \text{i.e., exp. in } d\]

Space? \(O(b^d)\) (keeps every node in memory)

This is a big problem. If we run for 24 hours and generate nodes at 100MB/sec, the space requirement is 8.64 TB

Optimal solutions? Yes if cost = 1 per step, but not in general

\(b\) = maximum branching factor of the search tree

\(d\) = depth of the least-cost solution

\(m\) = maximum depth of the state space (may be \(\infty\))
Uniform-cost search

Expand least-cost unexpanded node

Implementation: $fringe =$ queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?

$b =$ maximum branching factor of the search tree

d = depth of the least-cost solution

$m =$ maximum depth of the state space (may be ∞)
Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ϵ > 0 such that step cost ≥ ϵ

Time?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty \) \]
Uniform-cost search

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if ∃ ϵ > 0 such that step cost ≥ ϵ

Time? # of nodes with g ≤ cost of optimal solution, \(O(b^{[C^*/\epsilon]})\)
where \(C^*\) is the cost of the optimal solution

Space?

\[
b = \text{maximum branching factor of the search tree} \\
d = \text{depth of the least-cost solution} \\
m = \text{maximum depth of the state space (may be } \infty \text{)}
\]
Uniform-cost search

Expand least-cost unexpanded node

Implementation: \(fringe = \) queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if \(\exists \epsilon > 0 \) such that step cost \(\geq \epsilon \)

Time? \(\# \) of nodes with \(g \leq \) cost of optimal solution, \(O(b^{\lceil C^*/\epsilon \rceil}) \)

where \(C^* \) is the cost of the optimal solution

Space? \(\# \) of nodes with \(g \leq \) cost of optimal solution, \(O(b^{\lceil C^*/\epsilon \rceil}) \)

Optimal solutions?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty \text{)} \]
Uniform-cost search

Expand least-cost unexpanded node

Implementation: $fringe = $ queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete? Yes, if $\exists \epsilon > 0$ such that step cost $\geq \epsilon$

Time? $\#$ of nodes with $g \leq$ cost of optimal solution, $O(b^{[C^*/\epsilon]})$

where C^* is the cost of the optimal solution

Space? $\#$ of nodes with $g \leq$ cost of optimal solution, $O(b^{[C^*/\epsilon]})$

Optimal solutions? Yes

$b =$ maximum branching factor of the search tree

d = depth of the least-cost solution

$m =$ maximum depth of the state space (may be ∞)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

```
A
B C
D E F G
H I J K L M N O
```
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \) LIFO queue, i.e., put successors at front

```
A
  /|
 / | 
B  C
  /|
 / | 
D  E  F  G
  /|
 / | 
H  I  J  K
     /|
     / | 
L  M  N  O
```
Depth-first search

Expand deepest unexpanded node

Implementation:

\[\text{fringe} = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \) LIFO queue, i.e., put successors at front

![Graph diagram](image-url)
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe = \text{LIFO queue, i.e., put successors at front}$
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe\) = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\emph{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty \text{)} \]
Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:
 Backtrack if you reach a state you’ve already seen on the current path

Time?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty) \]
Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:
 Backtrack if you reach a state you’ve already seen on the current path

Time? \(O(b^m)\): terrible if \(m\) is much larger than \(d\)
 but if solutions are dense, may be much faster than breadth-first

Space?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty) \]
Properties of depth-first search

Complete?
No in infinite-depth spaces
Yes in finite spaces, if we modify to avoid loops:
Backtrack if you reach a state you’ve already seen on the current path

Time? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space

Optimal solutions?

$b =$ maximum branching factor of the search tree
$d =$ depth of the least-cost solution
$m =$ maximum depth of the state space (may be ∞)
Properties of depth-first search

Complete?
- No in infinite-depth spaces
- Yes in finite spaces, if we modify to avoid loops:
 - Backtrack if you reach a state you’ve already seen on the current path

Time? $O(b^m)$: terrible if m is much larger than d
- but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space

Optimal solutions? Not unless it’s lucky

$b = \text{maximum branching factor of the search tree}$

$d = \text{depth of the least-cost solution}$

$m = \text{maximum depth of the state space (may be } \infty \text{)}$
Depth-limited search

Depth-first search, backtrack at each node of depth \(l \) unless it’s a solution

Recursive implementation:

```
function Depth-Limited-Search( problem, limit ) returns soln/fail/cutoff
  Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)

function Recursive-DLS( node, problem, limit ) returns soln/fail/cutoff
  cutoff-occurred? ← false
  if Goal-Test(problem, State[node]) then return node
  else if Depth[node] = limit then return cutoff
  else for each successor in Expand(node, problem) do
    result ← Recursive-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    /* tells what to return if we don’t find a solution */
    else if result ≠ failure then return result
  if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

Depth-limited search to depth 0,
Depth-limited search to depth 1,
Depth-limited search to depth 2,
...
Stop when you find a solution

```
function Iterative-Deepening-Search(problem) returns a solution
  inputs: problem, a problem
  for depth ← 0 to ∞ do
    result ← Depth-Limited-Search(problem, depth)
    if result ≠ cutoff then return result
  end
```
Iterative deepening search

Limit = 0

function Iterative-Deepening-Search\((\text{problem}) \) returns a solution
 inputs: problem, a problem
 for depth ← 0 to \(\infty \) do
 result ← Depth-Limited-Search\((\text{problem, depth}) \)
 if result \(\neq \) cutoff then return result
 end
Iterative deepening search

Limit = 1

![Graph diagram showing iterative deepening search process]

```
function Iterative-Deepening-Search(problem) returns a solution
  inputs: problem, a problem
  for depth ← 0 to ∞ do
    result ← Depth-Limited-Search(problem, depth)
    if result ≠ cutoff then return result
  end
```
Iterative deepening search

Limit = 2

function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
end

CMSC 421: Chapter 3 56
Iterative deepening search

Limit = 3

CMSC 421: Chapter 3 57
Properties of iterative deepening search

Complete?

\[b = \text{maximum branching factor of the search tree} \]
\[d = \text{depth of the least-cost solution} \]
\[m = \text{maximum depth of the state space (may be } \infty \text{)} \]
Properties of iterative deepening search

Complete? Yes

Time?

\[
b = \text{maximum branching factor of the search tree} \\
d = \text{depth of the least-cost solution} \\
m = \text{maximum depth of the state space (may be } \infty)\
\]
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space?

\[
\begin{align*}
b &= \text{maximum branching factor of the search tree} \\
d &= \text{depth of the least-cost solution} \\
m &= \text{maximum depth of the state space (may be } \infty) \\
\end{align*}
\]
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal solutions?

\(b = \) maximum branching factor of the search tree
\(d = \) depth of the least-cost solution
\(m = \) maximum depth of the state space (may be \(\infty\))
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal solutions? Yes, if step cost = 1

Can be modified to behave like uniform-cost search

Node-generation operations for \(b = 10\) and \(d = 5\), solution at far right leaf:

- **IDS:** \(1 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450\)
- **BFS:** \(1 + 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100\)

IDS does better because it doesn’t expand the nodes at depth \(d\)

BFS expands them because of a quirk in the pseudocode
Tree search

\begin{verbatim}
function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end
\end{verbatim}

Tree-Search doesn’t do the goal test until it selects a node for expansion

♦ Needed for uniform-cost search to find optimal solutions
♦ Needed for some algorithms in the next chapter

With breadth-first search, we’re looking for shallowest (but not necessarily optimal) solutions

Modify the pseudocode to check for a solution whenever a node is generated
Tree search for BFS

function \textsc{Tree-Search}(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Modification: if any of them is a solution, return it immediately

Number of node-generation operations:
\begin{itemize}
 \item IDS: $1 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$
 \item BFS: $1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$
\end{itemize}

Highest number of nodes stored:
\begin{itemize}
 \item IDS: $1 + 10 \times 5 = 51$
 \item BFS: $1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
\end{itemize}
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes(^{(2)})</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^d)</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^d)</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(bm)</td>
<td>(bl)</td>
<td>(bd)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes(^{(1)})</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes(^{(1)})</td>
</tr>
</tbody>
</table>

where

- \(b = \) branching factor
- \(C^* = \) cost of optimal solution, or \(\infty\) if there’s no solution
- \(d = \) depth of shallowest solution, or \(\infty\) if there’s no solution
- \(\epsilon = \) smallest cost of each edge
- \(l = \) cutoff depth for depth-limited search
- \(m = \) depth of deepest node (may be \(\infty\))

\(^1\) if step cost is 1 \(^2\) if \(\epsilon > 0\)
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

```plaintext
function GRAPH-SEARCH( problem, fringe ) returns a solution, or failure
  closed ← an empty set
  fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if STATE[node] is not in closed then
      add STATE[node] to closed
      fringe ← INSERTALL(EXPAND(node, problem), fringe)
    end
  end
```

Can do breadth-first graph search, uniform-cost graph search

Can also do depth-first graph search, but there’s a tradeoff:
♦ Sometimes get exponentially less time than depth-first tree search
♦ Usually need exponentially more memory than depth-first tree search
Summary

◊ Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

◊ Variety of uninformed search strategies

◊ Iterative deepening search uses only linear space and (when $b \geq 2$) not much more time than other uninformed algorithms

◊ Graph search sometimes takes exponentially less time than tree search (when the number of paths to a node is exponential in its depth)

◊ Graph search sometimes takes exponentially more space than tree search (when the search space is treelike)

Homework assignment (due in one week)
five problems, 10 points each – total 50 points

2.9, 3.7(a,b), 3.8, 3.9(a,c), 3.13