Review for the Final Exam

CMSC 421: Final Review
Final Exam

According to the university exam schedule, the final exam is on Wednesday, May 19, 10:30-12:30, in our usual classroom

◊ Open book, open notes
◊ No electronic devices
Summary of what we’ve covered

The midterm exam covered Chapters 1–6 and Common Lisp.

The final exam will include some of that, but will emphasize the following:

- logic 7–9
- planning \(\approx 11-12\), but use my lecture slides, not the book
- uncertainty 13
- Bayesian networks 14
- making decisions 16, 17
- learning 18, 20.5

I won’t ask you much about Chapters 22, 24, and 25

On the next few pages, I’ll point out some topics you won’t need to know

A few days before the exam, I’ll post announcement(s) about other topics that you won’t need to know
Chapter 1: Intelligent Agents

◊ What AI is:
◊ thinking versus acting
◊ humanly versus rationally

I won’t ask any questions about Chapter 1
Chapter 2: Intelligent Agents

◊ Agents and environments
◊ Rationality
◊ PEAS (Performance measure, Environment, Actuators, Sensors)
◊ Environment types
◊ Agent types

I won’t ask much (if anything) about Chapter 2
Chapter 3: Search

♦ Problem types: deterministic/nondeterministic, fully/partially observable
 example: vacuum world

♦ Tree-search algorithms
 Breadth-first search
 Uniform-cost search
 Depth-first search
 Depth-limited search, iterative deepening

♦ tree search versus graph search
Chapter 4: Informed Search and Exploration

◊ Heuristic search algorithms
 Greedy search
 A* (two versions)
 IDA*

◊ Heuristic functions
 admissibility
 consistency
 dominance
 problem relaxation

◊ Iterative improvement algorithms
 Hill climbing, simulated annealing,
 local beam search, genetic algorithms

We didn’t cover sections 4.4 (continuous spaces) and 4.5 (online search)
Common Lisp

◊ lists, atoms, list notation
◊ defining your own Lisp functions
◊ built-in Lisp operators (functions, predicates, special forms, macros)
◊ recursion, loops, and mapping functions
◊ passing functions as arguments
◊ operators for sequences (lists, vectors, strings)
◊ good programming style
 (no direct questions on this, but don’t write sloppy code!)
Chapter 5: Constraint Satisfaction

- Definition: variables, constraints
- Representation: constraint graphs
- Backtracking search
- Variable selection heuristics:
 - MRV (minimum remaining values)
 - degree (most constraints on remaining variables)
- Value selection heuristic: least constraining value
- Pruning techniques
 - forward checking
 - arc consistency (constraint propagation)
- Problem structure:
 - independent subproblems
 - tree-structured CSPs
 - cutset conditioning
Chapter 6: Adversarial Search

♦ What type of game: deterministic, turn-taking, 2-player, perfect information, zero sum

♦ Game trees, minimax values

♦ Alpha-beta pruning

♦ Depth-bounded search, static evaluation functions

♦ Node ordering

♦ Nondeterministic game trees (e.g., backgammon) and expectiminimax
Chapter 7: Logical agents

♦ Knowledge-based agents
♦ Wumpus world
♦ Logic in general—models and entailment
♦ Propositional (Boolean) logic
♦ Equivalence, validity, satisfiability
♦ Inference rules and theorem proving
 – Horn clauses, forward chaining, backward chaining
 – resolution
♦ Completeness, complexity
Chapter 8: First-Order Logic

◊ Syntax: symbols, atomic sentences, quantifiers, equality, sentences
◊ Semantics: interpretations, models, truth
◊ Substitutions
◊ Wumpus world in FOL
Chapter 9: Inference in First-Order Logic

♦ Reducing first-order inference to propositional inference
♦ Unification
♦ Generalized Modus Ponens
♦ Forward and backward chaining
♦ Logic programming
♦ Resolution
Planning

Related to Chapters 11 and 12 of the book, but based mainly on my lecture slides

◊ Conceptual model, three main types of planners
 * I won’t ask you about these

◊ Classical planning
 * restrictive assumptions
 * definitions, representation (blocks-world example)

◊ Classical planning algorithms:
 * GraphPlan (dinner example)
 * FastForward

◊ Task-list planning
 * the TFD algorithm (travel examples)
Chapter 13: Uncertainty

♦ Random variables, propositions
♦ Prior and conditional probability
♦ Inference by enumeration
♦ Independence and conditional independence
♦ Bayes’ rule
♦ Wumpus example
Chapter 14: Bayesian networks

◊ Syntax - what the networks look like
◊ Global semantics: joint distribution
◊ Local semantics: conditional independence, Markov blanket
◊ constructing Bayesian networks
◊ Exact inference: enumeration, variable elimination

We didn’t cover these sections:
 14.3 (hybrid networks),
 14.5 (approximate inference),
 14.6 (first-order representations)
Chapter 16, Making Simple Decisions

♦ Rational preferences
♦ Utilities
♦ Multiattribute utilities
♦ Human utilities, and the utility of money \textit{(not on the final exam)}
♦ Decision networks \textit{(not on the final exam)}
♦ Value of information

\textit{We didn’t cover Section 16.7 (decision-theoretic expert systems)}
Sections 17.1–17.3: MDPs

- Markov decision processes
- Policies
- Value iteration
- Policy iteration

We didn’t cover these sections:

- 17.4 (Partially observable MDPs)
- 17.5 (decision-theoretic agents)
Section 17.6: Game theory

♦ Prisoner’s Dilemma
♦ Strategies, strategy profiles
♦ Dominance, dominant strategy equilibria
♦ Pareto optimality
♦ Mixed strategies, expected utility
♦ Nash equilibria (for both pure and mixed strategies)
♦ finding Nash equilibria
 • Battle of the sexes, soccer penalty kicks, morra, Braess’s paradox
♦ p-beauty contest, iterated elimination of dominant strategies

The final exam won’t include the following topics:
 roshambo, the IPD with noise, the DBS algorithm
Chapter 18: Learning from Observations

We only covered Sections 18.1–18.3:

◊ Inductive learning (not on the final)
◊ Ockham’s razor (not on the final)
◊ Decision tree learning: attributes, information gain
◊ Performance measurement

We didn’t cover these sections:
18.4 (ensemble learning)
18.5 (computational learning theory)
Section 20.5: Neural Networks

◊ analogy to brain computation

◊ nodes/units

◊ activation functions: threshold (step), logistic (sigmoid)

◊ learning rule

◊ perceptrons (single-layer networks with threshold units)

◊ perceptron learning rule

◊ multi-layer feedforward networks

◊ error-backpropagation learning

◊ Examples: Nettalk, OCR, ALVINN (not on the final)
Chapter 22: Communication and Language

◊ Communication (not on the final)
◊ Grammar, parse trees
◊ logical grammars (not on the final)
◊ Problems presented by real language
 (grammaticality, ambiguity, anaphora, indexicality, vagueness
discourse structure, metonymy, metaphor, noncompositionality)
 (not on the final)
◊ part-of-speech tagging
 • tagsets
 • stochastic tagging
 • Bayes’ rule, computing conditional probabilities

If there are any questions about this material, they will be relatively simple
Chapter 24: Vision

♦ Perception generally
♦ Vision “subsystems”
♦ Image formation, color vision
♦ Edge detection, noise, smoothing
♦ Inferring shape from motion, stereo, texture
♦ Inferring shape from edges (Huffman-Clowes line labeling)
♦ Object recognition, digit recognition
♦ Shape context matching

I might ask a question about Huffman-Clowes line labeling, but not about anything else
Chapter 25, Robotics

♦ definition, various examples
♦ hand coding of robot controllers
♦ path and motion planning
♦ configuration parameters, configuration space
♦ cell decomposition, voronoi diagrams
♦ probabilistic roadmaps: how to generate and use them
♦ robot control: sensory-motor functions, modalities

I might ask a question about roadmaps, but not about anything else