Part-of-Speech Tagging

- The process of assigning a part-of-speech to each word in a sentence
Example

<table>
<thead>
<tr>
<th>Word</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>heat</td>
<td>verb (noun)</td>
</tr>
<tr>
<td>water</td>
<td>noun (verb)</td>
</tr>
<tr>
<td>in</td>
<td>prep (noun, adv)</td>
</tr>
<tr>
<td>a</td>
<td>det (noun)</td>
</tr>
<tr>
<td>large</td>
<td>adj (noun)</td>
</tr>
<tr>
<td>vessel</td>
<td>noun</td>
</tr>
</tbody>
</table>
What is POS tagging good for?

• Useful in
 – Information Retrieval
 – Text to Speech: object(N) vs. object(V);
 discount(N) vs. discount(V)
 – Word Sense Disambiguation

• Useful as a preprocessing step of parsing
 – Unique tag to each word reduces the number of parses
Choosing a tagset

• Need to choose a standard set of tags to do POS tagging
 – One tag for each part of speech
• Could pick very coarse tagset
• More commonly used set is finer-grained
 – E.g., the UPenn TreeBank II tagset has 36 word tags
 • PRP, PRP$, VBG, VBD, JJR, JJS …
 – (also has tags for phrases)
• Even more finely-grained tagsets exist
Why is POS tagging hard?

• Ambiguity
 – “Plants/N need light and water.”
 – “Each one plant/V one.”
 – “Flies like a flower”
 • *Flies*: noun or verb?
 • *like*: preposition, adverb, conjunction, noun, or verb?
 • *a*: article, noun, or preposition?
 • *flower*: noun or verb?
Methods for POS tagging

• Rule-Based POS tagging
 – e.g., ENGTWOL [Voutilainen, 1995]
 • large collection (> 1000) of constraints on what sequences of tags are allowable

• Transformation-based tagging
 – e.g., Brill’s tagger [Brill, 1995]
 – sorry, I don’t know anything about this

• Stochastic (Probabilistic) tagging
 – e.g., TNT [Brants, 2000]
 – I’ll discuss this in a bit more detail
Stochastic Tagging

• Based on probability of certain tag occurring, given various possibilities
 – Necessitates a *training corpus*
 • A collection of sentences that have already been tagged
 – Several such corpora exist
 • One of the best known is the Brown University Standard Corpus of Present-Day American English (or just the **Brown Corpus**)
 • about 1,000,000 words from a wide variety of sources
 – POS tags assigned to each
Approach 1

• Assign each word its most likely POS tag
 – If w has tags t_1, ..., t_k, then can use
 \[P(t_i | w) = \frac{c(w,t_i)}{c(w,t_1) + \ldots + c(w,t_k)} \], where
 • \(c(w,t_i) \) = number of times w/t_i appears in the corpus
 – Success: 91% for English

• Example

 heat :: noun/89, verb/5
Approach 2

• Given: sequence of words W
 \[W = w_1, w_2, \ldots, w_n \] (a sentence)
 – e.g., $W = \text{heat water in a large vessel}$
• Assign sequence of tags T:
 \[T = t_1, t_2, \ldots, t_n \]
• Find T that maximizes $P(T \mid W)$
Practical Statistical Tagger

• By Bayes’ Rule,
 \[P(T \mid W) = P(W \mid T) \ P(T) / P(W) = \alpha \ P(W \mid T) \ P(T) \]
 So find T that maximizes \(P(W \mid T) \ P(T) \)
 – Chain rule:
 \[P(T) = P(t_1) \ P(t_2 \mid t_1) \ P(t_3 \mid t_1, t_2) \ P(t_4 \mid t_1, t_2, t_3) \ldots P(t_n \mid t_1, t_2, \ldots t_{n-1}) \]
 – As an approximation, use
 \[P(T) \approx P(t_1) \ P(t_2 \mid t_1) \ P(t_3 \mid t_2) \ldots P(t_n \mid t_{n-1}) \]

• Assume each word is dependent only on its own POS tag: given its POS tag, it is conditionally independent of the other words around it. Then
 \[P(W \mid T) = P(w_1 \mid t_1) \ P(w_2 \mid t_2) \ldots P(w_n \mid t_n) \]
 So
 \[P(T) \ P(W \mid T) \approx P(t_1) \ P(t_2 \mid t_1) \ldots P(t_n \mid t_{n-1}) \ P(w_1 \mid t_1) \ P(w_2 \mid t_2) \ldots P(w_n \mid t_n) \]
Getting the Conditional Probabilities

• Want to compute
 • \(P(T) \ P(W|T) \approx P(t_1) \ P(t_2|t_1) \ldots \ P(t_n|t_{n-1}) \ P(w_1|t_1) \ P(w_2|t_2) \ldots \ P(w_n|t_n) \)

• Let
 – \(c(t_i) = \) frequency of \(t_i \) in the corpus
 – \(c(w_i,t_i) = \) frequency of \(w_i/t_i \) in the corpus
 – \(c(t_{i-1},t_i) = \) frequency of \(t_{i-1} \ t_i \) in the corpus

• Then we can use
 – \(P(t_i|t_{i-1}) = \frac{c(t_{i-1},t_i)}{c(t_{i-1})} \),
 – \(P(w_i|t_i) = \frac{c(w_i,t_i)}{c(t_i)} \)
Example

• Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
 – to/TO race/???
• People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN
 the/DT race/NN for/IN outer/JJ space/NN
 – the/DT race/???
• For each word \(w_i \), \(t_i = \arg\max_t P(t|t_{i-1})P(w_i|t) \)
 – max(\(P(\text{VB}|\text{TO}) \) \(P(\text{race}|\text{VB}) \),
 \(P(\text{NN}|\text{TO}) \) \(P(\text{race}|\text{NN}) \))
• From the Brown corpus
 – \(P(\text{NN}|\text{TO}) = .021 \) \(P(\text{race}|\text{NN}) = .00041 \)
 – \(P(\text{VB}|\text{TO}) = .34 \) \(P(\text{race}|\text{VB}) = .00003 \)
• So
 – \(P(\text{NN}|\text{TO}) \) \(P(\text{race}|\text{NN}) = .021 \times .00041 = .000007 \)
 – \(P(\text{VB}|\text{TO}) \) \(P(\text{race}|\text{VB}) = .34 \times .00003 = .00001 \)
UPenn TreeBank II word tags

- CC - Coordinating conjunction
- CD - Cardinal number
- DT - Determiner
- EX - Existential there
- FW - Foreign word
- IN - Preposition or subordinating conjunction
- JJ - Adjective
- JJR - Adjective, comparative
- JJS - Adjective, superlative
- LS - List item marker
- MD - Modal
- NN - Noun, singular or mass
- NNS - Noun, plural
- NNP - Proper noun, singular
- NNPS - Proper noun, plural
- PDT - Predeterminer
- POS - Possessive ending
- PRP - Personal pronoun
- PRPS - Possessive pronoun
- RB - Adverb
- RBR - Adverb, comparative
- RBS - Adverb, superlative
- RP - Particle
- SYM - Symbol
- TO - to
- UH - Interjection
- VB - Verb, base form
- VBD - Verb, past tense
- VBG - Verb, gerund or present participle
- VBN - Verb, past participle
- VBP - Verb, non-3rd person singular present
- VBZ - Verb, 3rd person singular present
- WDT - Wh-determiner
- WP - Wh-pronoun
- WP$ - Possessive wh-pronoun
- WRB - Wh-adverb