A Family of Empirical Studies

Identifying the Fundamental Drivers of Inspection Costs and Benefits

Collaborators

• Victor Basili
• Philip Johnson
• Audris Mockus
• Harvey Siy
• Lawrence Votta
• Carol Toman
Overview

• Software inspection
• Research questions
• Experiments
• Future work

Software Inspection

• Software inspection: An in-process technical review of any software work product conducted for the purpose of finding and eliminating defects. [NASA-STD-2202-93]
• Software work products: e.g., requirements specs, designs, code, test plans, documentation
• Defects: e.g., implementation errors, failures to conform to standards, failures to satisfy requirements
Inspection Process Model

- Most organizations use a three-step inspection process
 - individual analysis
 - use Ad Hoc or Checklist techniques to search for defects
 - team analysis
 - reader paraphrases artifact
 - issues from individual and team analyses are logged
 - rework
 - Author resolves and repairs defects

Overview

- Software inspection
- Research questions
- Experiments
- Future work
Current Practice

• Widely-used (especially in large-scale development)
 – Few practical alternatives
 – Demonstrated cost-effectiveness
 • defects found at all stages of development
 • high cost of rework

• Substantial inefficiencies
 – 1 code inspection per 300-350 NCSL (~ 1500/.5MNCSL)
 – 20 person-hours per inspection (not including setup and rework)
 – significant effect on interval (calendar time to complete)
 – effort per defect is high
 – many defects go undiscovered

Research Conjectures

• Several variants have been proposed
 – [Fagan76, LMW79, PW85, BL89, Brothers90, Johnson92, SMT92, Gilb93, KM93, Hoffman94, RD94]

• Weak empirical evaluation
 – cost-benefit analyses are simplistic or missing
 – poor understanding of cost and benefit drivers

• Low-payoff areas emphasized
 – process
 – group dynamics

• High-payoff areas de-emphasized
 – individual analysis techniques
 – tool support
Inspection Costs and Benefits

- Potential drivers
 - structure (tasks, task dependencies)
 - techniques (individual and group defect detection)
 - inputs (artifact, author, reviewers)
 - technology (tool support)
 - environment (deadlines, priorities, workloads)

Overview

- Software inspection
- **Research questions**
- Experiments
- Future work
Process Structure

- Main structural differences
 - team size: large vs. small
 - number of teams: single vs. multiple
 - coordination of multiple teams: parallel vs. sequential
- H_0: none of these factors has any effect on effort, interval, or effectiveness
 - 6-person development team at Lucent, plus 11 outside inspectors
 - optimizing compiler (65K lines of C++)
 - Harvey Siy joined team as Inspection Quality Engineer (IQE)
 - instrumented 88 inspections over 18 months (6/94-12/95)

Experimental Design

- Independent variables
 - number of inspection teams (1 or 2)
 - number of reviewers per team (1, 2 or 4)
 - repair between multiple teams (required or prohibited)
- Control group: 1-team with 4-reviewers
- Dependent variables
 - inspection effort (person hours)
 - inspection interval (working days)
 - observed defect density (defects/KNCSL)
 - repair statistics
Treatment Allocation and Validity

- **Treatment allocation rule**
 - IQE notified via email when code unit becomes available
 - treatment assigned on a random basis
 - reviewers selected at random (without replacement)

- **Internal validity**
 - selection (natural ability)
 - maturation (learning)
 - instrumentation (code quality)

- **External validity**
 - scale (project size)
 - subject representativeness (experience)
 - team/project representativeness (application domain)

Main Effects

- Effectiveness: no significant effects
• Team size: 1tX1p < (1tX2p ° 1tX4p)
• Repair: 2tXR ° 2tXN
• Teams: 2t X1p > 1tX1p, 2tX2p ° 1tX2p
• Teams: 2t ° 1t (total # of rev’s held constant)

Process Inputs

• Independent vars not significant, but variation is high
 – are the effects of unknown factors obscuring the effects of process structure?
 – are the effects of unknown factors greater than the effect of process structure?
• Process inputs are likely source of variation
• Develop statistical models
 – generalized linear models (Poisson family with logarithmic link)
 – model variables reflect process structure and process inputs
 – remove insignificant factors
• Model: Defects ~ Functionality + log(Size) + RB + RF
 – explains » 50% of variation using 10 of 88 degrees of freedom
• Process input is more influential than process structure
 – structure: » 2%, inputs: » 50%

Summary

• Structural factors had no significant effect on effectiveness
 – more reviewers didn’t always find more defects
• Process inputs were far more influential than process structure
• Best explanation of inspection effectiveness (so far)
 – not process structure
 – reviewer expertise
Analysis Techniques: Groups vs. Individuals

- Traditional view: meetings are essential
 - many defects or classes of defects are found during meetings
 - these defects would not have been found otherwise
- Research hypotheses:
 - inspections with meetings are no more effective than those without
 - inspections with meetings do not find specific classes of faults more often than those without
 - benefit of additional individual analysis is greater than or equal to the benefit of meeting

Candidate Inspection Methods

- Preparation -- Inspection (PI)
 - individuals become familiar with artifact
 - team meets to identify defects
- Detection -- Collection (DC)
 - individuals identify issues
 - team meets to classify issues and identify defects
- Detection -- Detection (DD)
 - individuals identify issues
 - individuals identify more issues
Experimental Design

- **Subjects:**
 - 21 UMD CS graduate students (Spring ‘95)
 - 27 professional software developers (Fall ‘96)

- **Artifacts**
 - software requirements specs (WLMS and CRUISE)

- **Independent Variables**
 - inspection method (PI, DC, or DD)
 - inspection round (R1 or R2)
 - specification to be inspected (W or C)
 - presentation order (WC or CW)

- **Dependent Variables**
 - individual and team defect detection ratios
 - meeting gain and loss rates

• H₁: Inspections with meetings find more defects than those without
 - DD method found more faults than any other method
 - PI method was indistinguishable from DC method
• H₂: Inspections with meetings find specific classes of defects more often than those without
 – 5 of 42 defects are found more often by inspections with meetings than by those without
 – only 1 difference is statistically significant

• H₃: Benefit of additional individual analysis is less than or equal to the benefit of meeting
 – no differences in 1st phase team performance
 – significant differences in 2nd phase team performance
Summary

- Meetingless inspections identified the most defects
 - also, generated the most issues and false positives
- Few “meeting-sensitive” faults
- Additional data
 - similar study at the University of Hawaii shows same results (Johnson97, Porter & Johnson97)
 - industrial case study of 3000 inspections showed that meetingless inspections were as effective as those with meetings (Perpich, Perry, Porter, Votta, & Wade97)
- Best explanation of inspection effectiveness (so far)
 - not process structure nor group dynamics
 - reviewer expertise

Improved Individual Analysis

- Develop an improved individual analysis
- Measure effect on overall inspection effectiveness
- Classification of individual analysis methods
 - analysis techniques: strategies for detecting defects
 - prescriptiveness: nonsystematic - systematic
 - reviewer responsibility: population of defects to be found
 - scope: specific - general
 - coordination policy: assignment of responsibilities to reviewers
 - overlap: distinct - identical
Systematic Inspection Hypothesis

- Current Practice: Ad Hoc or Checklist methods
 - nonsystematic techniques with general and identical responsibilities
- Alternative approach
 - systematic techniques with specific and distinct responsibilities
- Research Hypothesis
 - H0: Inspections using non-systematic techniques with general and identical responsibilities find more defects than those using systematic techniques with specific and distinct responsibilities

Defect-based Scenarios

- Ad Hoc method based on defect taxonomy [BW]
- Checklist method based on taxonomy plus items taken from industrial checklists.
- Scenario method refined Checklist items into procedures for detecting a specific class of defects

- Three groups of scenarios
 - data type inconsistencies
 - incorrect functionality
 - ambiguity/missing functionality

Reviewer Responsibility
Experimental Design

- **Subjects**
 - 48 UMD CS graduate students (Spring and Fall ‘93)
 - 21 professional software developers (Fall ‘95)
- **Software requirements specs (WLMS and CRUISE)**
- **Independent variables**
 - replication (E1, E2)
 - round (R1, R2)
 - analysis method (Ad Hoc, Checklist, or Scenario)
 - specification (W or C)
 - order (CW, WC)
- **Dependent variables**
 - individual & team defect detection rates
 - meeting gain & loss rates

- Scenarios outperformed all other methods
- Checklist performance no better than Ad Hoc
Scenario reviewers found more targeted detects
Scenarios reviewers found as many untargeted defects

Summary

- Current models may be unfounded
 - meetings not necessarily cost-effective
 - more complex structures did not improve effectiveness
- Reviewer expertise appears to be dominant factor in inspection effectiveness
 - structure had little effect
 - inputs more influential than structure
 - individual effects more influential than group effects
 - improved individual analysis methods significantly improved performance
Field Testing

- Goal: reduce interval without reducing effectiveness
- Solution approach: remove coordination
 - private vs. shared individual analysis
 - meetings vs. meetingless
 - sequential vs. parallel tasks
- Developed web-based inspection tool (HyperCode)
 - Event monitor for distributed development groups
- Deployed the tool in multi-phase experiment
 - Distributed team (Naperville, IL and Whippany, NJ)

Some Results

- The initial acceptance of the inspection tool was excellent
- Reduced paperwork and document distribution time
- Integrated seamlessly into the existing environment and workflow
- Opened up new possibilities for concurrency and inherent speedups of the elapsed time interval
- Leveraged the ubiquity of the Web in a browser independent manner
- Does not appear to reduce defect detection quality