CMSC 131
Object-Oriented Programming I

Sorting/Algorithm Analysis

Dept of Computer Science
University of Maryland College Park

This material is based on material provided by Ben Bederson, Bonnie Dorr, Fawzi Emad, David Mount, Jan Plane
Overview

- Sorting/Algorithm Analysis
Sorting and Searching

- **Sorting**: Given a list of items from any ordered domain (integers, doubles, Strings, Dates, ...) **permute** (rearrange) the elements so they are in **increasing order**
- **Searching**: Given a list of items and given a designated **query item** q, determine **whether** q appears in the list, and if so, then **where**
- **Sorting and Searching**: are two of the most fundamental tasks in all of computer science
 - Although these may seem pretty simple, there are many different ways to solve these problems
 - These approaches are quite different in terms of **complexity** and **efficiency**
 - There is a 722 page book (by D. E. Knuth) devoted to just these two topics alone!
- **Note**: We will talk about Sorting only (one type of Sort: Selection Sort). You will see Search in CMSC 132
Selection Sort

- **Selection Sort**: one of the simplest sorting algorithms known. (Recall: an **algorithm** is a method of solving a problem.)
- **Input Argument**: Let \(a \) denote the array to be sorted. We assume only that the elements of \(a \) are from any class that implements the **Comparable interface**, that is, it defines a public method **compareTo**
Selection Sort Algorithm

- **Selection Sort**: Works as follows. Let a[0 ... n-1] be the array to be sorted.

  ```plaintext
  for ( i running from 0 up to n-1 ) {
    Let j = index of the smallest of a[i], a[i+1], ... a[n-1];
    swap a[i] with a[j];
  }
  ```

- **Example:**

 - Initial array: 8 6 11 3 15 5
 - After sorting: 3 5 6 8 11 15

 ![Diagram of Selection Sort Example](image_url)
Selection Sort

selectionSort(Comparable[] a) {
 for (int i = 0; i < a.length-1; i++) {
 int j = indexOfMin(i, a);
 swap elements at i and j
 }
}

indexOfMin(int start, Comparable[] a) {
 Comparable min = a[start];
 int minIndex = start;
 for (int i = start + 1; i < a.length; i++)
 if (a[i].compareTo(min) < 0) {
 min = a[i];
 minIndex = i;
 }
 return minIndex;
}
Using Selection Sort

- **Polymorphism**: Selection sort is polymorphic in the sense that it can be applied to any array whose elements implement the **Comparable** interface.

- **Example**:

```
Integer[ ] list1 = { new Integer( 8 ), new Integer( 6 ),
                   /* blah, blah, blah... */ new Integer( 5 ) };
String[ ] list2 = { "Carol", "Bob", "Ted", "Alice", "Schultzie" };
selectionSort( list1 );
selectionSort( list2 );
```

| Contents of list1: | 3 5 6 8 11 15 |
| Contents of list2: | Alice Bob Carol Schultzzie Ted |
Running time of Selection Sort

- **Efficiency**: How long does Selection Sort take to run?
- **What should we count?**
 - **Milliseconds of execution time?**
 - Depends on the speed of your particular **computer**
 - We prefer a **platform-independent measure**
 - **Statements of Java code that are executed?**
 - This depends on the **programmer**
 - We would like a quantity that is a function of the algorithm, not the specific way it was coded
 - **Number of times we call compareTo()?**
 - This is an acceptable machine/programmer-independent statistic
 - This method is called every time through the innermost loop and depends only on the algorithm
Running time of Selection Sort

- **Running time depends on the contents of the array:**
 - **Length:** The principal determinant of running time is the number of elements, n, in the array
 - **Contents:** For some sorting algorithms, the running time may depend on the contents of the array. E.g., some algorithms run faster if the initial array is nearly sorted
 - **Worst-case running time:** Among all arrays of length n, consider the one that has the highest running time
 - **Average-case running time:** Average the running time over all arrays of length n. (This is very messy, so we won’t do it.)

- **Worst-case running time:**
 - Let $T(n)$ denote the time (measured as the number of calls to `compareTo();`) required in the worst-case to sort an array of n items using Selection Sort
Running time of Selection Sort

- How many times is compareTo() called? Call this $T(n)$
 - Let n denote the length of array n
 - We go through the for-loop in selectionSort() exactly n times, for $i = 0, 1, 2, ..., n-1$.
 - Each time we call indexOfMin(i, a), we call compareTo() to compare the min to each element of the subarray $a[i+1, ..., n-1]$
 - In general, any subarray $a[j, ..., k]$ contains $k - j + 1$ elements
 - Thus, each call to indexOfMin(i, a) makes $(n-1) - (i+1) + 1 = n-i-1$ calls to compareTo()
 - To compute $T(n)$, we simple add up $(n-i-1)$, for $i = 0, 1, ..., n-1$
 - $i=0$: $(n-0-1) = n-1$
 - $i=1$: $(n-1-1) = n-2$
 - $i=2$: $(n-2-1) = n-3$
 - ...$i=n-2$: $(n-(n-2)-1) = 1$
 - $i=n-1$: $(n-(n-1)-1) = 0$

We rewrite the sum in increasing order

$$T(n) = 0 + 1 + \ldots + (n-3) + (n-2) + (n-1)$$

$$= \sum_{i=0}^{n-1} i$$

This summation notation is shorthand for the expression shown above.
What is the value of this sum?
\[T(n) = 0 + 1 + 2 + 3 + \ldots + (n-3) + (n-2) + (n-1) \]

An old addition trick: Group terms to get a common sum of values:
\[T(n) = 0 + 1 + 2 + 3 + \ldots + (n-3) + (n-2) + (n-1) \]

There are roughly \((n-1)/2\) pairs, each of which sums to \(n\). Thus, the total value is roughly \(n(n-1)/2\). (In fact, this is exactly correct.)

Final running time:
\[
T(n) = \frac{n(n - 1)}{2} = \frac{n^2 - n}{2} = \frac{n^2}{2} - \frac{n}{2}
\]
Q: How efficient is Selection Sort?
A: It is pretty bad.

$$T(n) = \frac{n^2}{2} - \frac{n}{2}$$
Big-”Oh” Notation (Revisited)

- Selection Sort’s running time is given by the formula:

\[T(n) = \frac{n^2}{2} - \frac{n}{2} \]

- **Observation**: Efficiency is most critical for large \(n \)
 - As \(n \) becomes large, the quadratic \(n^2/2 \) term grows much more **rapidly** than the linear \(n/2 \) term
 - Small constant factors in running time like \((1/2)\) depend on the **programmer’s implementation**, and are best ignored
 - By ignoring the effects of
 - **lower order terms** (like \(n/2 \))
 - **constant factors** (like \(1/2 \))

 we say that the running time grows **quadratically with \(n \)**, that is, “on the order of \(n^2 \)”, or succinctly \(O(n^2) \)
“Big-Oh” Notation: a concise way of expressing the running time of an algorithm by ignoring less critical issues such as
- lower order (slower growing) terms and
- constant multiplicative factors

Thus, the running time:

\[T(n) = \frac{n^2}{2} - \frac{n}{2} \]

\[T(n) \to O(n^2) \]

Formal Mathematical Definition of “Big-Oh”:
- We will leave this for later courses (CMSC 250 and 351).