Design Patterns I

Department of Computer Science
University of Maryland, College Park
Design Patterns

- Descriptions of **reusable** solutions to common software design problems

- Captures the experience of experts
 - Rationale for design
 - Tradeoffs
 - Codifies design in reusable form

- Example
 - Iterator pattern
Goals

- Solve common programming challenges
- Improve reliability of solution
- Aid rapid software development
- Useful for real-world applications
Observations

- Design patterns are like recipes – generic solutions to expected situations
- Design patterns are language independent
- Recognizing when and where to use design patterns requires familiarity & experience
- Design pattern libraries serve as a glossary of idioms for understanding common, but complex solutions
Observations (cont.)

- Many design patterns may need to fit together
 - Design Patterns (by Gamma et al. 1995, a.k.a. Gang of Four, or GOF) list 23 design patterns
 - Around 250 common OO design patterns

- Design patterns are used throughout the Java Class Libraries
Documentation Format

1. Motivation or context for pattern
2. Prerequisites for using a pattern
3. Description of program structure
4. List of participants (classes & objects)
5. Collaborations (interactions) between participants
6. Consequences of using pattern (good & bad)
7. Implementation techniques & issues
8. Example codes
9. Known uses
10. Related patterns
Types of Design Patterns

- **Creational**
 - Deal with the best way to create objects

- **Structural**
 - Ways to bring together groups of objects

- **Behavioral**
 - Ways for objects to communicate & interact
Creational Patterns

1. Abstract Factory - Creates an instance of several families of classes
2. Builder - Separates object construction from its representation
3. Factory Method - Creates an instance of several derived classes
4. Prototype - A fully initialized instance to be copied or cloned
5. Singleton - A class of which only a single instance can exist
6. **Adapter** - Match interfaces of different classes
7. **Bridge** - Separates an object’s interface from its implementation
8. **Composite** - A tree structure of simple and composite objects
9. **Decorator** - Add responsibilities to objects dynamically
10. **Façade** - Single class that represents an entire subsystem
11. **Flyweight** - Fine-grained instance used for efficient sharing
12. **Proxy** - Object representing another object
Behavioral Patterns

13. Chain of Responsibility - A way of passing a request between a chain of objects
14. Command - Encapsulate a command request as an object
15. Interpreter - A way to include language elements in a program
16. Iterator - Sequentially access the elements of a collection
17. Mediator - Defines simplified communication between classes
18. Memento - Capture and restore an object's internal state
Behavioral Patterns (cont.)

19. **Observer** - A way of notifying change to a number of classes

20. **State** - Alter an object's behavior when its state changes

21. **Strategy** - Encapsulates an algorithm inside a class

22. **Template Method** - Defer the exact steps of an algorithm to a subclass

23. **Visitor** - Defines a new operation to a class without changing class
Iterator Pattern

Definition

- Move through collection of objects without knowing its internal representation

Where to use & benefits

- Use a standard interface to represent data objects
- Uses standard iterator built in each standard collection, like List, Sort, or Map
- Need to distinguish variations in the traversal of an aggregate
Iterator Pattern

Example

- Iterator for collection
- Original
 - Examine elements of collection directly
- Using pattern
 - Collection provides Iterator class for examining elements in collection
Iterator Example

```java
public interface Iterator<V> {
    bool hasNext();
    V next();
    void remove();
}

Iterator<V> it = myCollection.iterator();

while ( it.hasNext() ) {
    V x = it.next();     // finds all objects
    ...
    // in collection
}
```
Singleton Pattern

- Definition
 - One instance of a class or value accessible globally

- Where to use & benefits
 - Ensure unique instance by defining class final
 - Access to the instance only via methods provided
Singleton Example

public class Employee {
 public static final int ID = 1234; // ID is a singleton
}

public final class MySingleton {
 // declare the unique instance of the class
 private static MySingleton uniq = new MySingleton();
 // private constructor only accessed from this class
 private MySingleton() { … }
 // return reference to unique instance of class
 public static MySingleton getInstance() {
 return uniq;
 }
}

Adapter Pattern

Definition
- Convert existing interfaces to new interface

Where to use & benefits
- Help match an interface
- Make unrelated classes work together
- Increase transparency of classes
Adapter Pattern

Example

- Adapter from integer Set to integer Priority Queue
- Original
 - Integer set does not support Priority Queue
- Using pattern
 - Adapter provides interface for using Set as Priority Queue
 - Add needed functionality in Adapter methods
public interface PriorityQueue { // Priority Queue
 void add(Object o);
 int size();
 Object removeSmallest();
}
Adapter Example

```java
public class PriorityQueueAdapter implements PriorityQueue {
    Set s;
    PriorityQueueAdapter(Set s) { this.s = s; }
    public void add(Object o) { s.add(o); }
    int size() { return s.size(); }
    public Integer removeSmallest() {
        Integer smallest = Integer.MAX_VALUE;
        for (Integer i : s) {
            if (i.compareTo(smallest) < 0)
                smallest = i;
        }
        s.remove(smallest);
        return smallest;
    }
}
```
Factory Pattern

Definition

- Provides an abstraction for deciding which class should be instantiated based on parameters given

Where to use & benefits

- A class cannot anticipate which subclasses must be created
- Separate a family of objects using shared interface
- Hide concrete classes from the client
Factory Pattern

Example

- Car Factory produces different Car objects

Original
- Different classes implement Car interface
- Directly instantiate car objects
- Need to modify client to change cars

Using pattern
- Use carFactory class to produce car objects
- Can change cars by changing carFactory
Factory Example

class Ferrari implements Car; // fast car
class Bentley implements Car; // antique car
class Explorer implements Car; // family SUV
Car fast = new Ferrari(); // returns fast car

public class carFactory {
 public static Car create(String type) {
 if (type.equals("fast")) return new Ferrari();
 if (type.equals("antique")) return new Bentley();
 else if (type.equals("family")) return new Explorer();
 }
}

Car fast = carFactory.create("fast"); // returns fast car
Decorator Pattern

Definition

Attach additional responsibilities or functions to an object dynamically or statically.

Where to use & benefits

Provide flexible alternative to subclassing
Add new function to an object without affecting other objects
Make responsibilities easily added and removed dynamically & transparently to the object
Decorator Pattern

Example

- Pizza Decorator adds toppings to Pizza

Original

- Pizza subclasses
- Combinatorial explosion in # of subclasses

Using pattern

- Pizza decorator classes add toppings to Pizza objects dynamically
- Can create different combinations of toppings without modifying Pizza class
Decorator Example

class Pizza {
 int cost();
}
class SmallPizza implements Pizza {
 int cost() { return 8; }
}
class LargePizza implements Pizza {
 int cost() { return 12; }
}
class PizzaDecorator implements Pizza {
 private Pizza p;
 public PizzaDecorator(Pizza p) { this.p = p; }
 public int cost() { return p.cost(); }
}
Decorator Example

```java
public class WithOlive extends PizzaDecorator {
    public WithOlive(Pizza p) { super(p); }
    public int cost() { return super.cost() + 2; }
}

public class WithTomato extends PizzaDecorator {
    public WithTomato(Pizza p) { super(p); }
    public int cost() {return super.cost() + 3;}
}

// Driver
Pizza tomatoOlivePizza = new WithTomato(new WithOlive(new LargePizza()));
System.out.println(tomatoOlivePizza.cost()); // returns 12 + 2 + 3

Pizza doubleTomatoPizza = new WithTomato(new WithTomato(new SmallPizza()));
System.out.println(doubleTomatoPizza.cost()); // returns 8 + 3 + 3
```
Decorator Pattern

Examples from Java I/O

- Interface
 - InputStream
- Concrete subclasses
 - FileInputStream, ByteArrayInputStream
- Decorators
 - BufferedInputStream, DataInputStream
- Code
 - InputStream s = new DataInputStream(new BufferedInputStream(new FileInputStream()));