CMSC 132: Object-Oriented Programming II

Algorithmic Complexity I

Department of Computer Science
University of Maryland, College Park
Algorithm Efficiency

Efficiency

- Amount of resources used by algorithm
 - Time, space

Measuring efficiency

- Benchmarking
- Asymptotic analysis
Benchmarking

Approach
- Pick some desired inputs
- Actually run implementation of algorithm
- Measure time & space needed

Industry benchmarks
- SPEC – CPU performance
- MySQL – Database applications
- WinStone – Windows PC applications
- MediaBench – Multimedia applications
- Linpack – Numerical scientific applications
Benchmarking

Advantages
- Precise information for given configuration
 - Implementation, hardware, inputs

Disadvantages
- Affected by configuration
 - Data sets (often too small)
 - A dataset that was the right size 3 years ago is likely too small now
- Hardware
- Software
 - Affected by special cases (biased inputs)
 - Does not measure intrinsic efficiency
Asymptotic Analysis

Approach
- Mathematically analyze efficiency
- Calculate time as function of input size n
 - $T \approx O(f(n))$
 - T is on the order of $f(n)$
 - “Big O” notation

Advantages
- Measures intrinsic efficiency
- Dominates efficiency for large input sizes
- Programming language, compiler, processor irrelevant
Search Example

Number guessing game

- Pick a number between 1…n
- Guess a number
- Answer “correct”, “too high”, “too low”
- Repeat guesses until correct number guessed
Linear Search Algorithm

Algorithm
- Guess number = 1
- If incorrect, increment guess by 1
- Repeat until correct

Example
- Given number between 1…100
- Pick 20
- Guess sequence = 1, 2, 3, 4 … 20
- Required 20 guesses
Linear Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = 1, requires 1 guess
- If number = n, requires n guesses
- On average, needs n/2 guesses
- Time = $O(n) = \text{Linear time}$
Binary Search Algorithm

Algorithm

- Set low and high to be lowest and highest possible value
- Guess middle = (low+high)/2
- If too large, set high = middle-1
- If too small, set low = middle+1
- Repeat until guess correct
Binary Search Algorithm

Example

Given number between 1…100
secret number we are trying to find is 20

Guesses

- low = 1, high = 100, guess 50, Answer = too large
- low = 1, high = 49, guess 25, Answer = too large
- low = 1, high = 24, guess 12, Answer = too small
- low = 13, high = 24, guess 18, Answer = too small
- low = 19, high = 24, guess 21, Answer = too large
- low = 19, high = 20, guess 19, Answer = too small
- low = 20, high = 20, guess 20, Answer = correct

Required 7 guesses
Binary Search Algorithm

Analysis of # of guesses needed for 1…n

- If number = n/2, requires 1 guess
- If number = 1, requires $\log_2(n)$ guesses
- If number = n, requires $\log_2(n)$ guesses
- On average, needs $\log_2(n)$ guesses
- Time = $O(\log_2(n)) = O(\log(n)) = \log$ time
Search Comparison

For number between 1…100
- Simple algorithm = 50 steps
- Binary search algorithm = \(\log_2(n) = 7 \) steps

For number between 1…100,000
- Simple algorithm = 50,000 steps
- Binary search algorithm = \(\log_2(n) \) (about 17 steps)

Binary search is much more efficient!
Asymptotic Complexity

Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/2</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

Comparing two functions
- \(n/2 \) and \(4n+3 \) behave similarly
- Run time roughly doubles as input size doubles
- Run time increases linearly with input size

For large values of \(n \)
- \(\text{Time}(2n) / \text{Time}(n) \) approaches exactly 2

Both are \(O(n) \) programs
Asymptotic Complexity

Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>log(_2)(n)</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>512</td>
<td>9</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - $\log_2(n)$ and $5 \cdot \log_2(n) + 3$ behave similarly
 - Run time roughly increases by constant as input size doubles
 - Run time increases logarithmically with input size
- For large values of n
 - $\text{Time}(2n) - \text{Time}(n)$ approaches constant
 - Base of logarithm does not matter
 - Simply a multiplicative factor
 - $\log_a N = (\log_b N) / (\log_b a)$
 - Both are $O(\log(n))$ programs
Asymptotic Complexity

Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

- Comparing two functions
 - n^2 and $2n^2 + 8$ behave similarly
 - Run time roughly increases by 4 as input size doubles
 - Run time increases quadratically with input size

- For large values of n
 - $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches 4

- Both are $O(n^2)$ programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs

![Graph showing Big-O notation with input size on the x-axis and number of steps on the y-axis. The graph includes a line labeled O(...) and another line labeled f(n).]
Formal Definition of Big-O

Function $f(n)$ is $O(g(n))$ if

- For some positive constants M, N_0
- $M \times g(n) \geq f(n)$, for all $n \geq N_0$

Intuitively

- For some coefficient M & all data sizes $\geq N_0$
 - $M \times g(n)$ is always greater than $f(n)$
5n + 1000 ⇒ O(n)

- Select M = 6, N₀ = 1000
- For n ≥ 1000
 - 6n ≥ 5n + 1000 is always true
- Example ⇒ for n = 1000
 - 6000 ≥ 5000 + 1000
Big-O Examples

$2n^2 + 10n + 1000 \Rightarrow O(n^2)$

- Select $M = 4$, $N_0 = 100$
- For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
- Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

- For large values of n
 - Any $O(\log(n))$ algorithm is faster than $O(n)$
 - Any $O(n)$ algorithm is faster than $O(n^2)$
- Asymptotic complexity is fundamental measure of efficiency
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>O(log(n))</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>O(n)</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>O(n log(n))</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>O(n^2)</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>O(n^3)</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>O(n^k)</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>O(k^n)</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>O(n!)</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>O(n^n)</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest

For size n, constant $k > 1$
Comparison of Complexity

A Comparison of Orders

- n
- $\frac{1}{2}n^2$
- n^3
Complexity Category Example

![Graph showing the relationship between problem size and the number of solution steps for different complexity categories: 2^n, n^2, $n\log(n)$, and n. The graph illustrates how the number of solution steps increases exponentially with 2^n, quadratically with n^2, linearly with n, and logarithmically with $\log(n)$.](image-url)
Calculating Asymptotic Complexity

As n increases

- Highest complexity term dominates
- Can ignore lower complexity terms

Examples

- $2n + 100 \Rightarrow O(n)$
- $n \log(n) + 10n \Rightarrow O(n \log(n))$
- $\frac{1}{2}n^2 + 100n \Rightarrow O(n^2)$
- $n^3 + 100n^2 \Rightarrow O(n^3)$
- $\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior

Types of analysis
- Best case
- Worst case
- Average case
- Amortized
Types of Case Analysis

Best case

- Smallest number of steps required
- Not very useful
- Example ⇒ Find item in first place checked
Types of Case Analysis

Worst case

- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example ⇒ Find item in last place checked
Types of Case Analysis

Average case

- Number of steps required for “typical” case
- Most useful metric in practice
- Different approaches
 - Average case
 - Expected case
Approaches to Average Case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps