CMSC 132: Object-Oriented Programming II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Overview

- Critical sections
- Comparing complexity
- Types of complexity analysis
Analyzing Algorithms

Goal

Find asymptotic complexity of algorithm

Approach

Ignore less frequently executed parts of algorithm

Find critical section of algorithm

Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

- Heart of algorithm
- Dominates overall execution time

Characteristics
- Operation central to functioning of program
- Contained inside deeply nested loops
- Executed as often as any other part of algorithm

Sources
- Loops
- Recursion
Critical Section Example 1

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. B
4. C

Code execution

- A \(\Rightarrow\) once
- B \(\Rightarrow\) n times
- C \(\Rightarrow\) once

Time \(\Rightarrow\) \(1 + n + 1 = O(n)\)
Critical Section Example 2

Code (for input size n)

1. A
2. for (int i = 0; i < n; i++)
3. B
4. for (int j = 0; j < n; j++)
5. C
6. D

Code execution

- A \Rightarrow once
- B \Rightarrow n times
- C \Rightarrow n^2 times
- D \Rightarrow once

Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

Code (for input size n)

1. A
2. for (int $i = 0; i < n; i++$)
3. for (int $j = i+1; j < n; j++$)
4. B

Code execution

- A \Rightarrow once
- B $\Rightarrow \frac{1}{2} n (n-1)$ times

Time $\Rightarrow 1 + \frac{1}{2} n^2 = O(n^2)$
Critical Section Example 4

Code (for input size n)

1. A
2. for (int $i = 0; i < n; i++$)
3. for (int $j = 0; j < 10000; j++$)
4. B

Code execution

- A \Rightarrow once
- B \Rightarrow 10000 n times

Time $\Rightarrow 1 + 10000 \times n = O(n)$
Critical Section Example 5

Code (for input size n)

1. for (int i = 0; i < n; i++)
2. for (int j = 0; j < n; j++)
3. A
4. for (int i = 0; i < n; i++)
5. for (int j = 0; j < n; j++)
6. B

Code execution

- $A \Rightarrow n^2$ times
- $B \Rightarrow n^2$ times

Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

Code (for input size n)

1. $i = 1$
2. while ($i < n$) {
3. A
4. $i = 2 \times i$
 }
5. B

Code execution

- A $\Rightarrow \log(n)$ times
- B $\Rightarrow 1$ times

Time $\Rightarrow \log(n) + 1 = O(\log(n))$
Critical Section Example 7

Code (for input size n)

1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)

Code execution

- A \(\Rightarrow 1\) times
- DoWork(n/2) \(\Rightarrow 2\) times
- Time(1) \(\Rightarrow 1\)
- Time(n) = 2 \times Time(n/2) + 1
Recursive Algorithms

Definition

An algorithm that calls itself

Components of a recursive algorithm

1. Base cases
 - Computation with no recursion

2. Recursive cases
 - Recursive calls
 - Combining recursive results
Recursive Algorithm Example

Code (for input size n)

1. DoWork (int n)
2. if (n == 1)
3. A
4. else
5. DoWork(n/2)
6. DoWork(n/2)
Comparing Complexity

- Compare two algorithms
 - $f(n)$, $g(n)$

- Determine which increases at faster rate
 - As problem size n increases

- Can compare ratio
 - $\lim_{n \to \infty} \frac{f(n)}{g(n)}$
 - If ∞, $f()$ is larger
 - If 0, $g()$ is larger
 - If constant, then same complexity
Complexity Comparison Examples

- **log(n) vs. n^{1/2}**

 \[
 \lim_\limits{n \to \infty} \frac{f(n)}{g(n)} \quad \quad \lim_\limits{n \to \infty} \frac{\log(n)}{n^{1/2}} \rightarrow 0
 \]

- **1.001^n vs. n^{1000}**

 \[
 \lim_\limits{n \to \infty} \frac{f(n)}{g(n)} \quad \quad \lim_\limits{n \to \infty} \frac{1.001^n}{n^{1000}} \rightarrow ??
 \]

 Not clear, use L’Hopital’s Rule