NFA to DFA transformations described in terms of enormous vegetables

This pumpkin is angry with you because you do not know enough about NFA to DFA conversions (www.bigpumpkins.com)

By Asad B. Sayeed
This machine is really simple. Just as many a's as you want before b, or a+b for short. Let's convert this to a DFA intuitively.
What do we do first in the NFA? We visit the start state. So we should do the same in the DFA.

A DEZ—a deterministic enormous zucchini
If it gets a b in the NFA, it must reject. So in the DFA we must go to a failure state— with no exits. This is a state with no NFA equivalent.
If it gets an a, the NFA goes to state two. But at the same time, it can also go to state 1 via the empty transition. We can't allow this in the DFA. So we create a state that means BOTH.
Now what if it gets a b at 2? Well, luckily 2 goes to 3. And 2 is a part of our latest DFA state. So \{1,2\} can go to \{3\}, which is a final state just like in the DFA.
To be deterministic, we need a transition for every input at every state. So we need to know what happens to a at \{1,2\}. We know that a at 1 goes to 2 in the NFA. Which is \{1,2\} in the DFA, due to the empty transition.
Our final state \{3\} is not exempt from the requirements of determinism. But anything after a b in this language has to go back to the null/reject state. And anything in the reject state stays there.
Formal Construction

- NFA: $N = (Q, \Sigma, \delta, q_0, F)$. We want DFA $M = (Q', \Sigma, \delta', q'_0, F')$.
- $Q' = P(Q)$, ie the power set of Q. So states in the DFA are sets of NFA states.
- For every R in Q' and a in Σ, $\delta'(R, a) = \{q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R\}$. In other words, since states in the DFA are sets, we take all the transitions in the NFA of the members of those sets for a given input... and send it to the state in the DFA that is the set of the destinations in the NFA.
Formal Construction

- $q'_0 = \{ q_0 \}$
- $F' = \{ R \text{ in } Q' \mid R \text{ contains an accept state of } N \}$.
- But we also need to consider the empty transitions in the NFA. So we amend to say $\delta'(R, a) = \{ q \text{ in } Q \mid q \text{ in } \delta(r, a) \text{ or reachable via empty transitions for some } r \text{ in } R \}$. Similar for q'_0.

I think we need a more formal pickle construction
Another example NFA – let's convert it together!
A DFA solution—painful, eh?