CMSC 330: Organization of Programming Languages

Lambda Calculus
Many features exist simply for convenience

- Multi-argument functions
 - Use currying or tuples
 foo(a, b, c)

- Loops
 - Use recursion
 while(a < b) ...

- Side effects
 - Use functional programming
 a := 1

So what language features are really needed?
Turing Completeness

- A computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
Programming Language Theory

► Come up with a “core” language
 • That’s as small as possible
 • But still Turing complete

► Helps illustrate important
 • Language features
 • Algorithms

► One solution
 • Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)
- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Lambda Expressions

- A lambda calculus expression is defined as

 \[e ::= x \quad \text{variable} \]
 \[\mid \lambda x.e \quad \text{function} \]
 \[\mid e \; e \quad \text{function application} \]

- \(\lambda x.e \) is like \((\text{fun} \ x \rightarrow e)\) in OCaml

- That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - `let x = e1 in e2` is short for `(λx.e2) e1`

- Scope of `λ` extends as far right as possible
 - Subject to scope delimited by parentheses
 - `λx. λy.x y` is same as `λx.(λy.(x y))`

- Function application is left-associative
 - `x y z` is `(x y) z`
 - Same rule as OCaml
Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them
- To evaluate \((\lambda x. e_1) \ e_2\)
 - Evaluate \(e_1\) with \(x\) replaced by \(e_2\)
- This application is called \textit{beta-reduction}
 - \((\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]\)
 - \(e_1[x:=e_2]\) is \(e_1\) with occurrences of \(x\) replaced by \(e_2\)
 - This operation is called \textit{substitution}
 - Slightly different than the environments we saw for Ocaml
 - Do syntactic substitutions to replace formals with actuals
 - Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
Beta Reduction Example

\[(\lambda x.\lambda z.x\ z)\ y\]
\[\rightarrow (\lambda x.(\lambda z.(x\ z)))\ y\] // since \(\lambda\) extends to right
\[\rightarrow (\lambda x.(\lambda z.(x\ z)))\ y\] // apply \((\lambda x.e1)\ e2 \rightarrow e1[x:=e2]\)
\[\rightarrow \lambda z.(y\ z)\] // where \(e1 = \lambda z.(x\ z),\ e2 = y\)
\[\rightarrow \lambda z.(y\ z)\] // final result

Equivalent OCaml code

- \((\text{fun } x \rightarrow (\text{fun } z \rightarrow (x\ z)))\ y \rightarrow \text{fun } z \rightarrow (y\ z)\)
Lambda Calculus Examples

- $(\lambda x.x) \ z \rightarrow z$
- $(\lambda x.y) \ z \rightarrow y$
- $(\lambda x.x \ y) \ z \rightarrow z \ y$
 - A function that applies its argument to y
Lambda Calculus Examples (cont.)

- \((\lambda x. x \, y) \, (\lambda z. z) \rightarrow (\lambda z. z) \, y \rightarrow y\)

- \((\lambda x. \lambda y. x \, y) \, z \rightarrow \lambda y. z \, y\)
 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x. \lambda y. x \, y) \, (\lambda z. z z) \, x \rightarrow (\lambda y. (\lambda z. z z) y) \, x \rightarrow (\lambda z. z z) \, x \rightarrow x x\)
Defining Substitution

- Use recursion on structure of terms!
 - \(x[x:=e] = e\) // Replace \(x\) by \(e\)
 - \(y[x:=e] = y\) // \(y\) is different than \(x\), so no effect
 - \((e_1 e_2)[x:=e] = (e_1[x:=e]) (e_2[x:=e])\)
 // Substitute both parts of application
 - \((\lambda x.e')[x:=e] = \lambda x.e'\)
 - In \(\lambda x.e'\), the \(x\) is a parameter, and thus a local variable that is different from other \(x\)'s.
 - So the substitution has no effect in this case, since the \(x\) being substituted for is different from the parameter \(x\) that is in \(e'\)!
 - \((\lambda y.e')[x:=e] = ?\)
 - The parameter \(y\) does not share the same name as \(x\), the variable being substituted for
 - Is \(\lambda y.(e'[x:=e])\) correct?
Static Scoping & Alpha Conversion

- Lambda calculus uses *static scoping*

- Consider the following
 - \((\lambda x.x (\lambda x.x)) z \rightarrow ?\)
 - The rightmost “\(x\)” refers to the second binding
 - This is a function that
 - Takes its argument and applies it to the identity function

- This function is “the same” as \((\lambda x.x (\lambda y.y))\)
 - Renaming bound variables consistently is allowed
 - This is called *alpha-renaming* or *alpha conversion*
 - Ex. \(\lambda x.x = \lambda y.y = \lambda z.z\) \(\lambda y.\lambda x.y = \lambda z.\lambda x.z\)
Static Scoping (cont.)

- How about the following?
 - \((\lambda x.\lambda y.x \ y) \ y \rightarrow ?\)
 - When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
 - I.e., \((\lambda x.\lambda y.x \ y) \ y \neq \lambda y.y \ y\)

- Solution
 - \((\lambda x.\lambda y.x \ y)\) is “the same” as \((\lambda x.\lambda z.x \ z)\)
 - Due to alpha conversion
 - So change \((\lambda x.\lambda y.x \ y) \ y\) to \((\lambda x.\lambda z.x \ z) \ y\) first
 - Now \((\lambda x.\lambda z.x \ z) \ y \rightarrow \lambda z.y \ z\)
Completing the Definition of Substitution

- Recall: we need to define \((\lambda y. e') [x:=e]\)
 - We want to avoid capturing (free) occurrences of \(y\) in \(e\)
 - Solution: alpha-conversion!
 - Change \(y\) to a variable \(w\) that does not appear in \(e'\) or \(e\). (Such a \(w\) is called fresh.)
 - Replace all occurrences of \(y\) in \(e'\) by \(w\).
 - Then replace all occurrences of \(x\) in \(e'\) by \(e\)!

- Formally:
 \[
 (\lambda y. e') [x:=e] = \lambda w.((e' [y:=w]) [x:=e]) \quad (w \text{ is fresh})
 \]
Beta-Reduction, Again

Whenever we do a step of beta reduction

• \((\lambda x.e_1) e_2 \rightarrow e_1[x:=e_2]\)
 • We must alpha-convert variables as necessary
 • Usually performed implicitly (w/o showing conversion)

Examples

• \((\lambda x.\lambda y.x \ y) \ y = (\lambda x.\lambda z.x \ z) \ y \rightarrow \lambda z.y \ z \quad \text{// } y \rightarrow z\)
• \((\lambda x.x \ (\lambda x.x)) \ z = (\lambda y.y \ (\lambda x.x)) \ z \rightarrow z \ (\lambda x.x) \quad \text{// } x \rightarrow y\)
• \((\lambda x.x \ (\lambda x.x)) \ z = (\lambda x.\lambda y.y) \ y \rightarrow z \ (\lambda y.y) \quad \text{// } x \rightarrow y\)
Encodings

- The lambda calculus is Turing complete

- Means we can **encode** any computation we want
 - If we’re sufficiently clever...

- Examples
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping
Booleans

- Church’s encoding of mathematical logic
 - true = \(\lambda x.\lambda y.x \)
 - false = \(\lambda x.\lambda y.y \)
 - if a then b else c
 - Defined to be the \(\lambda \) expression: \(a \ b \ c \)

- Examples
 - if true then b else c \(\rightarrow \) \((\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.b) \ c \rightarrow b \)
 - if false then b else c \(\rightarrow \) \((\lambda x.\lambda y.y) \ b \ c \rightarrow (\lambda y.y) \ c \rightarrow c \)
Booleans (cont.)

- Other Boolean operations
 - not = \(\lambda x.((x \text{ false}) \text{ true}) \)
 - not \(x \) = if \(x \) then false else true!
 - not true \(\rightarrow (\lambda x.(x \text{ false}) \text{ true}) \text{ true} \rightarrow ((\text{true false}) \text{ true}) \rightarrow \text{false} \)
 - and = \(\lambda x.\lambda y.((x \ y) \text{ false}) \)
 - and \(x \ y \) = if \(x \) then \(y \) else false
 - or = \(\lambda x.\lambda y.((x \text{ true}) \ y) \)
 - or \(x \ y \) = if \(x \) then \(\text{true} \) else \(y \)

- Given these operations
 - Can build up a logical inference system
Pairs

- Encoding of a pair \(a, b \)
 - \((a, b) = \lambda x. \) if \(x \) then \(a \) else \(b \)
 - \(\text{fst} = \lambda f. f \text{ true} \)
 - \(\text{snd} = \lambda f. f \text{ false} \)

- Examples
 - \(\text{fst} (a, b) = (\lambda f. f \text{ true}) (\lambda x. \) if \(x \) then \(a \) else \(b \) \) \(\rightarrow \)
 \((\lambda x. \) if \(x \) then \(a \) else \(b \) \) \(\text{true} \) \(\rightarrow \)
 if \(\text{true} \) then \(a \) else \(b \) \(\rightarrow \) \(a \)
 - \(\text{snd} (a, b) = (\lambda f. f \text{ false}) (\lambda x. \) if \(x \) then \(a \) else \(b \) \) \(\rightarrow \)
 \((\lambda x. \) if \(x \) then \(a \) else \(b \) \) \(\text{false} \) \(\rightarrow \)
 if \(\text{false} \) then \(a \) else \(b \) \(\rightarrow \) \(b \)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - 0 = \(\lambda f. \lambda y. y \)
 - 1 = \(\lambda f. \lambda y. f y \)
 - 2 = \(\lambda f. \lambda y. f (f y) \)
 - 3 = \(\lambda f. \lambda y. f (f (f y)) \)
 - i.e., \(n = \lambda f. \lambda y. \text{<apply } f \text{ n times to } y> \)
 - Formally: \(n+1 = \lambda f. \lambda y. f (n f y) \)

(Alonzo Church, of course)
Operations On Church Numerals

Successor

- \text{succ} = \lambda z. \lambda f. \lambda y. f (z \ f \ y)

Example

- \text{succ} \ 0 =
 \begin{align*}
 & (\lambda z. \lambda f. \lambda y. f (z \ f \ y)) (\lambda f. \lambda y. y) \\
 & \quad \rightarrow \\
 & \lambda f. \lambda y. f ((\lambda f. \lambda y. y) f \ y) \\
 & \quad \rightarrow \\
 & \lambda f. \lambda y. f ((\lambda y. y) y) \\
 & \quad \rightarrow \\
 & \lambda f. \lambda y. f y \\
 & = 1
 \end{align*}

\begin{itemize}
 \item 0 = \lambda f. \lambda y. y
 \item 1 = \lambda f. \lambda y. f \ y
\end{itemize}

Since (\lambda x. y) z \rightarrow y
Operations On Church Numerals (cont.)

▶ IsZero?
 • \text{iszero} = \lambda z. (\lambda y. \text{false}) \text{true}

 This is equivalent to \lambda z.((z (\lambda y. \text{false})) \text{true})

▶ Example
 • \text{iszero} 0 =
 \[(\lambda z. (\lambda y. \text{false}) \text{true}) (\lambda f. \lambda y. y) \rightarrow (\lambda f. \lambda y. y) \text{false} \rightarrow (\lambda y. y) \text{true} \rightarrow (\lambda y. y) \text{true} \rightarrow \text{true} \]
 • 0 = \lambda f. \lambda y. y

Since \((\lambda x. y) z \rightarrow y\)
Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

- Addition
 - \(M + N = \lambda x.\lambda y.(M x)((N x) y) \)
 - Equivalently: \(+ = \lambda M.\lambda N.\lambda x.\lambda y.(M x)((N x) y) \)
 - In prefix notation (+ M N)

- Multiplication
 - \(M \times N = \lambda x.(M (N x)) \)
 - Equivalently: \(\times = \lambda M.\lambda N.\lambda x.(M (N x)) \)
 - In prefix notation (* M N)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y.((1 \ x)((1 \ x) \ y)) =$
 - $\lambda x.\lambda y.(((\lambda x.\lambda y.\lambda x y) \ x)(((\lambda x.\lambda y.\lambda x y) \ x) \ y)) \rightarrow$
 - $\lambda x.\lambda y.((\lambda y.\lambda x y)(((\lambda x.\lambda y.\lambda x y) \ x) \ y)) \rightarrow$
 - $\lambda x.\lambda y.((\lambda y.\lambda x y)((\lambda y.\lambda x y) \ y)) \rightarrow$
 - $\lambda x.\lambda y.\lambda x ((\lambda y.\lambda x y) \ y) \rightarrow$
 - $\lambda x.\lambda y x ((\lambda y.\lambda x y) \ y) \rightarrow$
 - $\lambda x.\lambda y x (x y) = 2$ Many implicit alpha conversions

- With these definitions
 - Can build a theory of arithmetic

- $1 = \lambda f.\lambda y. f \ y$
- $2 = \lambda f.\lambda y. f (f \ y)$
Looping

- Define $D = \lambda x. x \ x$, then
 - $D \ D = (\lambda x. x \ x) \ (\lambda x. x \ x) \rightarrow (\lambda x. x \ x) \ (\lambda x. x \ x) = D \ D$
 - So $D \ D$ is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

Then

\[Y \ F = \]

\[(\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) \ F \to\]

\[(\lambda x. F (x x)) (\lambda x. F (x x)) \to\]

\[F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]

\[= F (Y \ F) \]

\[Y \ F \text { is a } \textit{fixed point} \text { (aka “fixpoint”) of } F \]

\[\text {Thus } Y \ F = F (Y \ F) = F (F (Y \ F)) = ... \]

\[\bullet \text { We can use } Y \text { to achieve recursion for } F \]
Example

\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \ast (f \ (n-1))

- The second argument to \text{fact} is the integer
- The first argument is the function to call in the body
 - We’ll use \text{Y} to make this recursively call \text{fact}

\((Y \ \text{fact}) \ 1 = (\text{fact} \ (Y \ \text{fact})) \ 1\)
\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \ast ((Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \ast ((Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \ast (\text{fact} \ (Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \ast (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \ast ((Y \ \text{fact}) \ (-1))) \]
\[\rightarrow 1 \ast 1 \rightarrow 1 \]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives
The Need For Types

Consider the **untyped** lambda calculus

- \(\text{false} = \lambda x.\lambda y.y \)
- \(0 = \lambda x.\lambda y.y \)

Since everything is encoded as a function...

- We can easily misuse terms...
 - \(\text{false} \ 0 \rightarrow \lambda y.y \)
 - if \(0 \) then ...

 ...because everything evaluates to some function

The same thing happens in assembly language

- Everything is a machine word (a bunch of bits)
- All operations take machine words to machine words
Simply-Typed Lambda Calculus

- \[e ::= n \mid x \mid \lambda x : t . e \mid e \; e \]
 - Added integers \(n \) as primitives
 - Need at least two distinct types (integer & function)...
 - ...to have type errors
 - Functions now include the type of their argument
Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} \mid t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t_1 \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions

- Will show how to compute types later
 - Example of operational semantics
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work