Predictive Parsing

The Front End

- Perform a membership test: code ∈ source language?
- Is the program well-formed (semantically)?
- Build an IR version of the code for the rest of the compiler

The front end is not monolithic
The Front End - Scanner

Scanner
- Maps stream of characters into words
 - Basic unit of syntax
 - \(x = x + y ; \) becomes \(<id,x><eq,><plus><id,y><semi>;<>\)
 - Characters that form a word are its *lexeme*
 - Its *part of speech* (or *syntactic category*) is called its *token type*
 - Scanner discards white space & (often) comments

The Front End - Parser

Parser
- Checks the stream of words and their parts of speech (produced by the scanner) for grammatical correctness
- Determines if the input is syntactically well formed
- Guides checking at deeper levels than syntax
- Builds an IR representation of the code
Roadmap (Where are we?)

In CMSC 330 we studied scanners & parsers
- Specifying tokens
 - Regular expressions
- Specifying syntax
 - Context-free grammars

Now we’ll look at more advanced parsers
- Predictive top-down parsing
 - FIRST, FOLLOW, FIRST+
 - The LL(1) condition
 - Table-driven LL(1) parsers
- Bottom-up shift-reduce parsers

Parsing Techniques

Top-down parsers (LL(1), recursive descent)
- Start at the root of the parse tree and grow toward leaves
- Pick a production & try to match the input
- Bad “pick” ⇒ may need to backtrack
- Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars
Parsing Techniques: Top-down parsers

LL(1), recursive descent

1 input symbol lookahead
construct leftmost derivation (forwards)
input: read left-to-right

\[S \Rightarrow^*_{lm} A \beta \Rightarrow^*_{lm} \delta \beta \Rightarrow^*_{lm} y \]

LR(1), operator precedence

1 input symbol lookahead
construct rightmost derivation (backwards)
input: read left-to-right

\[S \Rightarrow^*_{rm} B \gamma \Rightarrow^*_{rm} \alpha \gamma \Rightarrow^*_{rm} y \]

CS430 Lecture 4 7

CS430 Lecture 4 8
Top-down Parsing

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:
- Construct the root node of the parse tree
- Repeat until the fringe of the parse tree matches the input string
 1. At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child
 2. When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack
 3. Find the next node to be expanded (label ∈ NT)

- The key is picking the right production in step 1
 → That choice should be guided by the input string

Picking the “Right” Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
- In general, an arbitrarily large amount
- Use the Cocke-Younger, Kasami algorithm or Earley’s algorithm

Fortunately,
- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars
Predictive Parsing

Basic idea

Given $A \rightarrow \alpha | \beta$, the parser should be able to choose between α & β

We can try to predict the correct choice by calculating

FIRST(α) sets

The set of tokens that appear as the first symbol in some string that derives from α

That is, $a \in$ FIRST(α) iff $\alpha \Rightarrow^* a \gamma$, for some γ

FOLLOW(A) sets

The set of tokens that appear immediately to the right of A in some sentential form

Predictive Parsing

Basic idea

Given $A \rightarrow \alpha | \beta$, the parser should be able to choose between α & β

FIRST sets

For some rhs $\alpha \in G$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is, $a \in$ FIRST(α) iff $\alpha \Rightarrow^* a \gamma$, for some γ

The LL(1) Property

If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

FIRST$(\alpha) \cap$ FIRST$(\beta) = \emptyset$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!
The FIRST Set

\[a \in \text{FIRST}(\alpha) \iff \alpha \Rightarrow^* a \gamma, \text{ for some } \gamma \]

To build FIRST(X) for all grammar symbols X:

1. if X is a terminal (token), FIRST(X) := \{ X \}
2. if X ::= \varepsilon, then \varepsilon \in \text{FIRST}(X)
3. iterate until no more terminals or \varepsilon can be added to any FIRST(X):
 if X ::= Y_1 Y_2 \ldots Y_k then
 a \in \text{FIRST}(X) if a \in \text{FIRST}(Y_j) and
 \varepsilon \in \text{FIRST}(Y_j) for all 1 \leq j < i
 \varepsilon \in \text{FIRST}(X) if \varepsilon \in \text{FIRST}(Y_i) for all 1 \leq i \leq k
 end iterate

Note: if \varepsilon \in \text{FIRST}(Y_j), then \text{FIRST}(Y_i) is irrelevant, for 1 < i

CS430 Lecture 4 13

The FIRST Set

\[a \in \text{FIRST}(\alpha) \iff \alpha \Rightarrow^* a \gamma, \text{ for some } \gamma \]

To build FIRST(\alpha) for \alpha = X_1 X_2 \ldots X_n:

1. \varepsilon \in \text{FIRST}(\alpha) if \varepsilon \in \text{FIRST}(X_j) and
 \varepsilon \in \text{FIRST}(X_j) for all 1 \leq j < i
2. \varepsilon \in \text{FIRST}(\alpha) if \varepsilon \in \text{FIRST}(X_i) for all 1 \leq i \leq n
LL(1) Example - First Sets

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Production</th>
<th>FIRST Sets</th>
<th>Nonterminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal → Expr</td>
<td>{ num, id }</td>
<td>Goal</td>
<td>{ num, id }</td>
</tr>
<tr>
<td>Expr → Term Expr’</td>
<td>{ num, id }</td>
<td>Expr</td>
<td>{ num, id }</td>
</tr>
<tr>
<td>Expr’ → + Expr’</td>
<td>{ + }</td>
<td>Expr’</td>
<td>{ +, -, e }</td>
</tr>
<tr>
<td></td>
<td>- Expr’</td>
<td>Term</td>
<td>{ num, id }</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>Term’</td>
<td>{ *, /, e }</td>
</tr>
<tr>
<td>Term → Factor Term’</td>
<td>{ num, id }</td>
<td>Factor</td>
<td>{ num, id }</td>
</tr>
<tr>
<td>Term’ → * Term</td>
<td>{ * }</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/ Term</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor → num</td>
<td>{ num }</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The FOLLOW Set

For a non-terminal A, define FOLLOW(A) as:

\[
\text{FOLLOW}(A) := \text{the set of terminals that can appear immediately to the right of } A \text{ in some sentential form.}
\]

Thus, a non-terminal's FOLLOW set specifies the tokens that can legally appear after it; a terminal has no FOLLOW set.
The FOLLOW Set

To build FOLLOW(X) for all non-terminal X:

1. Place $ in FOLLOW(<goa) // $ = EOF

 iterate until no more terminals or $ can be added
 to any FOLLOW(X):
2. If $ -> $ then
 put {FIRST($) - $} in FOLLOW(B)
3. If $ -> $ then
 put FOLLOW(A) in FOLLOW(B)
4. If $ -> $ and $ \in $ FIRST($) then
 put FOLLOW(A) in FOLLOW(B)

LL(1) Example - Follow Sets

<table>
<thead>
<tr>
<th>Grammar</th>
<th>FIRST Sets</th>
<th>FOLLOW Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>{ num, id }</td>
<td>{ $ }</td>
</tr>
<tr>
<td>Expr</td>
<td>{ num, id }</td>
<td>{ $ }</td>
</tr>
<tr>
<td>Expr’</td>
<td>{ +, - }</td>
<td>{ $ }</td>
</tr>
<tr>
<td>Term</td>
<td>{ num, id }</td>
<td>{ +, - }</td>
</tr>
<tr>
<td>Term’</td>
<td>{ *, / }</td>
<td>{ +, - }</td>
</tr>
<tr>
<td>Factor</td>
<td>{ num, id }</td>
<td>{ *, / }</td>
</tr>
</tbody>
</table>

1. Place $ in FOLLOW(<goa)
2. If $ -> $ then
 put {FIRST($) - $} in FOLLOW(B)
3. If $ -> $ then
 put FOLLOW(A) in FOLLOW(B)
4. If $ -> $ and $ \in $ FIRST($) then
 put FOLLOW(A) in FOLLOW(B)
Predictive Parsing

If $A \to \alpha$ and $A \to \beta$ and $\epsilon \in \text{FIRST}(\alpha)$, then we need to ensure that $\text{FIRST}(\beta)$ is disjoint from $\text{FOLLOW}(A)$, too.

Define $\text{FIRST}^*(\delta)$ for rule $A \to \delta$ as

- $\text{FIRST}(\delta) \cup \text{FOLLOW}(A)$, if $\epsilon \in \text{FIRST}(\delta)$
- $\text{FIRST}(\delta)$, otherwise

Predictive Parsing

The LL(1) Property

A grammar is LL(1) iff $A \to \alpha$ and $A \to \beta$ implies $\text{FIRST}^*(\alpha) \cap \text{FIRST}^*(\beta) = \emptyset$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

Question: Can there be two rules $A \to \alpha$ and $A \to \beta$ in a LL(1) grammar such that $\epsilon \in \text{FIRST}(\alpha)$ and $\epsilon \in \text{FIRST}(\beta)$?
Predictive Parsing

Given a grammar that has the $LL(1)$ property
- Problem: NT A needs to be replaced in next derivation step
- Assume $A \rightarrow \beta_1 | \beta_2 | \beta_3$, with
 $\text{FIRST}^+(\beta_1) \cap \text{FIRST}^+(\beta_2) \cap \text{FIRST}^+(\beta_3) = \emptyset$

/* find rule for A */
if (current token \in FIRST$^+(\beta_1)$)
 select $A \rightarrow \beta_1$
else if (current token \in FIRST$^+(\beta_2)$)
 select $A \rightarrow \beta_2$
else if (current token \in FIRST$^+(\beta_3)$)
 select $A \rightarrow \beta_3$
else
 report an error and return false

Grammars with the $LL(1)$ property are called **predictive grammars** because the parser can "predict" the correct expansion at each point in the parse.

Parsers that capitalize on the $LL(1)$ property are called **predictive parsers**.

One kind of predictive parser is the **recursive descent parser**. The other is a table-driven parser **table-driven parser**.

$LL(1)$ Parser Example

Is the following grammar $LL(1)$?

$S ::= a \ S \ b | \epsilon$

First(aSb) = \{a\}
First(ϵ) = \{\epsilon\}

First$^*(aSb)$ = \{a\}
First$^*(\epsilon)$ = (First (ϵ) - \{\epsilon\}) \cup Follow (S) = \{$\$, b\}

$LL(1)$? YES, since \{a\} \cap \{$\$, b\} = \emptyset
LL(1) Parser Example

Table-driven LL(1) parser

- **current input symbol**
- **rules for non-terminal**
- **non-terminal on top of the stack**

Building Table-driven Top Down Parsers

Building the complete table

- Need a row for every NT & a column for every T
- Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T

- entry is the rule X ::= β, if y ∈ FIRST+(β)
- entry is error otherwise (can treat empty entry as implicit error)

If any entry is defined multiple times, G is not LL(1)

This is the LL(1) table construction algorithm
LL(1) Skeleton Parser

```
token ← next_token()
push $ onto Stack // $ used to mark EOF
push the start symbol, $, onto Stack
TOS ← top of Stack
loop forever
  if TOS = $ and token = $ then
    break & report success (accept)
  else if TOS is a terminal then
    if TOS matches token then
      pop Stack // recognized TOS
token ← next_token()
    else report error looking for TOS
  else // TOS is a non-terminal
    if TABLE[TOS, token] is A → B₁B₂...Bᵦ then
      pop Stack // get rid of A
      push Bᵦ, Bᵦ₋₁, ... B₁ // in that order
    else report error expanding TOS
    TOS ← top of Stack
```
Table-driven $\text{LL}(1)$ Parser Example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>S $\Rightarrow aSb$</td>
<td>S $\Rightarrow \varepsilon$</td>
<td>S $\Rightarrow \varepsilon$</td>
<td>error</td>
<td></td>
</tr>
</tbody>
</table>

Stack	Remaining Input	Action
[$, S$] | aabbb, | S $\Rightarrow aSb$
[$, b, S, a$] | aabbb, | next input+pop
[$, b, S$] | abbb$, | S $\Rightarrow aSb$
[$, b, b, S, a$] | abbb$, | next input+pop
[$, b, b, S$] | abbb$, | next input+pop
[$, b, b, a, S$] | abbb$, | S $\Rightarrow \varepsilon$
[$, b, b, b, S$] | abbb$, | next input+pop
[$, b, b, b$] | bbbb, | next input+pop
[$, b, b$] | bb, | next input+pop
[$, b$] | b$$. | next input+pop
[$$] | $$. | accept

LL(1) Example - LL(1) Table

<table>
<thead>
<tr>
<th>Grammar</th>
<th>FIRST Sets</th>
<th>FOLLOW Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal \Rightarrow Expr</td>
<td>(num, id)</td>
<td>Goal (ε)</td>
</tr>
<tr>
<td>Expr \Rightarrow Term Expr'</td>
<td>(num, id)</td>
<td>Expr (ε)</td>
</tr>
<tr>
<td>Expr' \Rightarrow * Expr'</td>
<td>(+)</td>
<td>Expr' (ε)</td>
</tr>
<tr>
<td></td>
<td>- Expr'</td>
<td>Term' (ε, ε)</td>
</tr>
<tr>
<td></td>
<td>- (Expr)</td>
<td>Term' (ε, ε)</td>
</tr>
<tr>
<td>Term \Rightarrow Factor Term'</td>
<td>(num, id)</td>
<td>Factor' (ε, ε)</td>
</tr>
<tr>
<td>Term' \Rightarrow * Term</td>
<td>(*ε)</td>
<td>Factor' (ε, ε)</td>
</tr>
<tr>
<td></td>
<td>/ Term</td>
<td>(/)</td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>(ε)</td>
</tr>
<tr>
<td>Factor \Rightarrow num</td>
<td>(num)</td>
<td>entry is the rule X \Rightarrow β, if $y \in$ FIRST(β)</td>
</tr>
<tr>
<td></td>
<td>id</td>
<td>(id)</td>
</tr>
</tbody>
</table>

num	id	.	.	.	/	ε
Goal	Goal \Rightarrow Expr	Goal \Rightarrow Expr				
Expr	Expr \Rightarrow Term Expr'	Expr \Rightarrow Term Expr'				
Expr'	Expr \Rightarrow * Expr'	Expr' \Rightarrow * Expr'				
Term	Term \Rightarrow Factor Term'	Term \Rightarrow Factor Term'				
Term'	Term' \Rightarrow * Term	Term' \Rightarrow * Term				
Factor	Factor \Rightarrow num	Factor \Rightarrow id				
LL(1) Languages

Question
By eliminating left recursion and left factoring, can we transform an arbitrary CFG to a form where it meets the LL(1) condition? (and can be parsed predictively with a single token lookahead?)

Answer
Given a CFG that doesn’t meet the LL(1) condition, it is undecidable whether or not an equivalent LL(1) grammar exists.

Example
\{a^n b^n | n \geq 1\} \cup \{a^n 1 b^{2n} | n \geq 1\} has no LL(1) grammar

Language that Cannot Be LL(1)

Example
\{a^n b^n | n \geq 1\} \cup \{a^n 1 b^{2n} | n \geq 1\} has no LL(1) grammar

\begin{align*}
G & \rightarrow aAb \\
& \mid aAbbb \\
A & \rightarrow aAb \\
& \mid 0 \\
B & \rightarrow aAbbb \\
& \mid 1
\end{align*}

Problem: need an unbounded number of a characters before you can determine whether you are in the A group or the B group.