Dataflow Analysis

- **Properties**
 - Compile-time reasoning about the run-time flow of values
 - Represents facts about run-time behavior
 - Describes effect of executing each basic block on sets of facts
 - Propagate facts around control flow graph (CFG)

- **Limitations**
 - Answers must be conservative.
 - Often needs to approximate information
 - Assumes all possible paths may be taken

Global Data-flow Problem

- Represents specific facts about run-time behavior
 - Set of facts form a lattice \(L \)
 - Lattice is used to describe relation between values
 - Facts can also be represented as a bit or bit vector

- Within basic blocks
 - Describe effect of "executing" basic block on facts
 - Propagation functions: \(f_{\text{bb}}: L \rightarrow L \)

- Between basic blocks
 - Formulated as a set of simultaneous equations
 - Sets attached to nodes and edges of CFG
 - Solve equations using
 - Iterative framework
 - Methods based on program structure

Classical Data Flow Problems

- **Problems**
 - Reaching definitions (RD)
 - Live uses of variables (LV)
 - Available expressions (AVAIL)
 - Very Busy Expressions (VBE)

- **Def-Use and Use-Def chains, built from RD**
 - AVAIL enables global common subexpression elimination
 - VBE can be used for code motion

Reaching Definitions (RD)

A definition of a variable \(x \) is a statement that may modify the value of variable \(x \).

A definition of a variable \(x \) at node \(k \) reaches node \(n \) if there is a definition-free path from \(k \) to \(n \).

Live Variables (LV)

Use:
An appearance of a variable \(x \) as a RHS operand that results in reading its value.

A use of a variable \(x \) is **live on exit** from node \(k \) if there is a definition-clear path for \(x \) from \(k \) to a note \(n \) that uses \(x \).
DU and UD Chains

UD-Chain: Links each use of variable \(x \) to definitions which reach that use.

DU-Chain: Links each definition of variable \(x \) to those uses which that definition can reach.

Optimizations that can use DU and UD Chains

- **Optimization** Uses
- Dead code elimination (DU)
- Code motion (UD)
- Strength reduction (UD)
- Constant propagation (UD/PU)
- Forward substitution (Copy propagation) (DU)

Classification of Data Flow Problems: Propagation

IN(B) : data flow information valid on entry to basic block \(B \)

OUT(B) = \(GEN(B) \cup [IN(B) - KILL(B)] \)

GEN and **KILL** describe the effect of basic block \(B \) on data flow information

OUT(B) : data flow information valid on exit from basic block \(B \)

Classification of Data Flow Problems: Flow Direction

IN(B) = \(\wedge (GEN(B) \cup [IN(B) - KILL(B)] \))

\(Bi \in PREV(B) \)

IN(B) : data flow information valid on entry to basic block \(B \)

OUT(B) : data flow information valid on exit from basic block \(B \)

Classification of Data Flow Problems: Flow Direction

For forward data flow problems
- Solution for basic block applies to beginning of basic block
 - Examples
 - Reaching definitions
 - Available expressions
 - Constant propagation

For backward data flow problems
- Solution for basic block applies to the end of basic block
 - Examples
 - Live variables
 - Very busy expressions
Classification of Data Flow Problems: Merging Information

\[\text{IN}(B_1) \cap \text{IN}(B_2) \cap \ldots \cap \text{IN}(B_n) \]

\[\bigcup_{B \in \text{IN}(B)} \]

Merging data flow information

Classification of Data Flow Problems: Examples

<table>
<thead>
<tr>
<th></th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>may:</td>
<td>there exists a path (union)</td>
<td>(\text{RD})</td>
</tr>
<tr>
<td>must:</td>
<td>for all paths (intersection)</td>
<td>(\text{AVAIL})</td>
</tr>
</tbody>
</table>

Reaching Definitions

A definition of a variable \(x \) is a statement that may modify the value of variable \(x \).

A definition of variable \(x \) is killed if \(x \) is reassigned by another definition; the "killing" definition must occur.

\[\text{RD}(B) = \bigcup_{B_i \in \text{PRE}(B)} (\text{GEN}(B_i) \cup \{ \text{RD}(B_i) - \text{KILL}(B_i) \}) \]

\(\text{GEN}(B_i) \): All definitions in \(B_i \) that are not killed by subsequent definitions in \(B_i \)

\(\text{KILL}(B_i) \): All definitions of variables \(x \) defined in \(B_i \)

Reaching Definitions Example

Universe of facts? All possible subsets of \((B_i, \text{VAR})\)

pairs, where \(B_i \) is a basic block and \(\text{VAR} \) is a program variable

\(\text{GEN} \) and \(\text{KILL} \) sets for each basic block?

Initial values of \(\text{RD}(B) \) before propagation starts?

\(\text{IN}(B_i) = \emptyset \)

Reaching Definitions Example 2

\[\text{RD}(B) = \bigcup_{B_i \in \text{PRE}(B)} (\text{GEN}(B_i) \cup \{ \text{RD}(B_i) - \text{KILL}(B_i) \}) \]

\(\text{RD}(B_2) = \bigcup_{B_i \in \text{PRE}(B_2)} (\text{GEN}(B_i) \cup \{ \text{RD}(B_i) - \text{KILL}(B_i) \}) \)

\(\text{RD}(B_3) = \bigcup_{B_i \in \text{PRE}(B_3)} (\text{GEN}(B_i) \cup \{ \text{RD}(B_i) - \text{KILL}(B_i) \}) \)

\(\text{RD}(B_4) = \bigcup_{B_i \in \text{PRE}(B_4)} (\text{GEN}(B_i) \cup \{ \text{RD}(B_i) - \text{KILL}(B_i) \}) \)

Round Robin Iterative Algorithm (Forward Problem)

for \(j = 1, n \) do initialize \(\text{IN}(B_j) \) with \(T \); change := true;

while (change)

\(\text{new} := \bigwedge \{ (\text{GEN}(B_i) \cup \{ \text{IN}(B_i) - \text{KILL}(B_i) \}) \} \)

if (new \# \text{IN}(B_j))

\(\text{IN}(B_j) := \text{new}, \text{change} := \text{true} \)

}
POSTORDER and Reverse POSTORDER

Step 1: POSTORDER

- Main()
 count = 1;
 Visit (root)

- Visit(n)
 mark n as visited
 for each successor s of n not yet visited
 Visit(s);
 \[\text{POSTORDER}(n) = \text{count}; \]
 \[\text{count} = \text{count} + 1; \]

Step 2: rPOSTORDER

- For each node n
 \[\text{rPOSTORDER}(n) = \text{NumNodes} + 1 - \text{POSTORDER}(n) \]

Iterative Data-flow Solver

- Iterates over each basic block
 - Solving data-flow equations
 - Until data-flow solutions converge

- Data-flow solutions converge faster if
 - Compute solutions for predecessors before current node
 - Since solution for node only changes if solution for some predecessor changes (for forward problem)

- Visiting nodes in reverse postorder
 - More likely to solve predecessors first
 - Not possible to always solve all predecessors (e.g., loops)