Data-flow Analysis Frameworks

- Can use same framework to solve these data-flow problems
 - Local GEN, KILL information for each basic block
 - Initial values for data-flow solutions
 - Iterate through nodes in CFG until values stabilize
- Data-flow framework has three components
 - Set of values L
 - Operator for combining values \land
 - A set of propagation functions $L \rightarrow L$
- Benefits of using framework
 - Define properties needed to guarantee correctness, convergence
 - Can describe convergence speed and precision of results
 - Can reuse code to solve other problems

Data-flow Analysis

- Many data-flow equations have the same structure
 - $RD(B) = \{ GEN(B) \cup (RD(B) \setminus KILL(B)) \}$
 - $LV(B) = \{ GEN(B) \cup (LV(B) \setminus KILL(B)) \}$
 - $AVAIL(B) = \cap (GEN(B) \cup (AVAIL(B) \setminus KILL(B)))$
 - $VE(B) = \cap (GEN(B) \cup (VE(B) \setminus KILL(B)))$
 - $CONST(B) = \cap (GEN(B) \cup (CONST(B) \setminus KILL(B)))$

 Where $B \in PRE(B)$ or $SUCC(B)$ depending on problem

- What do data-flow problems have in common?
 - Meet operator \land to merge results
 - Propagation functions to model basic blocks
 - Direction:
 - Forward, backward
 - Best case and worst case values

Data-flow Lattices

- A lattice consists of a set of values L and a meet operator \land
 - For every $a, b, c \in L$
 - $a \land a = a$ (idempotent)
 - $a \land b = b \land a$ (commutative)
 - $(a \land b) \land c = a \land (b \land c)$ (associative)
 - \land imposes a partial order on L
 - $a \land b = a \land b$
 - $a \land b = a \land b$ and $a \land b$
 - A lattice may have a top element
 - $\top \land a = a$
 - A lattice may have a bottom element
 - $\bot \land 0 = \bot$

Iterative Solver

- What about loops?
 - Circular dependences between basic blocks
 - Can initialize and solve repeatedly
- Termination:
 - Goal is for solutions to converge to a fixed point
 - Can stop once answer stops changing
 - Is this guaranteed?
Monotonicity

- A data-flow analysis framework is monotone if
 \[x \leq y \] implies \(f(x) \leq f(y) \)
 i.e., "a smaller or equal" input to the same function will always give
 a "smaller or equal" output
- Equivalently
 \[f(x \land y) \leq f(x) \land f(y) \]
 i.e., if result of merging inputs then applying \(f \) is "smaller or equal" to applying \(f \) individually then merging result
- Intuitively, monotonicity means "smaller" input will not yield "larger" output
- Monotone frameworks are guaranteed to converge and terminate
 \[\text{If lattice elements can drop information a finite number of times} \]

Quality of Solution

- Possible solutions
 \[\text{Perfect solution} \]
 \[\text{Meet over real paths taken during program execution} \]
 \[\text{Meet-over-all-paths (MOP)} \]
 \[\text{Meet over potential paths in control flow graph} \]
 \[\text{Maximal-fixed-point (MFP)} \]
 \[\text{Solution from iterative framework} \]
- Properties
 \[\text{In general, MFP \& MOP \& perfect solution} \]
 \[\text{In some sense, MOP is the best feasible solution} \]
 \[\text{MFP is unique, regardless of order of propagation} \]
 \[\text{A framework is distributive if } f(x \land y) = f(x) \land f(y) \]
 \[\text{MFP = MOP for distributive framework} \]