CMSC 498T, Game Theory

Review for the Midterm Exam

Dana Nau
University of Maryland
1. Introduction

- Basic concepts:
 - normal form, utilities/payoffs, pure strategies, mixed strategies
- How utilities relate to rational preferences (not in the book)
- Some classifications of games based on their payoffs
 - Zero-sum
 - Roshambo, Matching Pennies
 - Non-zero-sum
 - Chocolate Dilemma, Prisoner’s Dilemma, Battle of the Sexes, Which Side of the Road?
 - Common-payoff
 - Which Side of the Road?
 - Symmetric
 - all of the above except Battle of the Sexes
2. Analyzing Normal-Form Games

- Several solution concepts, and ways of finding them:
 - Pareto optimality
 - Prisoner’s Dilemma, Which Side of the Road
 - best responses and Nash equilibria
 - Battle of the Sexes, Matching Pennies
 - finding Nash equilibria
 - real-world examples
 - soccer penalty kicks
 - road networks (Braess’s Paradox)
3. More about Normal-Form Games

- maximin and minimax strategies, and the Minimax Theorem
 - Matching Pennies, Two-Finger Morra
- dominant strategies
 - Prisoner’s Dilemma, Which Side of the Road, Matching Pennies
 - Elimination of dominated strategies
- evolutionarily stable strategies
 - Hawk-Dove game
- rationalizability
 - the p-Beauty Contest
- correlated equilibrium
 - Battle of the Sexes
- trembling-hand perfect equilibrium
- epsilon-Nash equilibrium
4a. Extensive-Form Games

- Extensive-form games
 - relation to normal-form games
 - Nash equilibria
 - subgame-perfect equilibria
 - backward induction
 - The Centipede Game
4b. Game-Tree Search

- Two-player perfect-information zero-sum games
 - the Minimax theorem applies
 - perfect-info => only need to look at pure strategies
 - minimax game-tree search
 - special case of backward induction
 - minimax values, alpha-beta pruning

- In sufficiently complicated games, must compute approximations
 - limited search depth, static evaluation function

- In games that are even more complicated, further approximation is needed
 - Monte Carlo roll-outs
4c. Lookahead Pathology

- Probability of correct decision, critical nodes
 - examples (P-games and N-games)

- General results
 - Pathology is more likely when branching factor is high, granularity is small, local similarity is low
 - Kalah, chess
 - Local pathologies
5. Imperfect-Information Games

- Nodes partitioned into information sets
 - Information set = \{all the nodes you might be at\}
- Behavioral strategies versus mixed strategies
 - Different equilibria in general; same equilibria if there’s perfect recall
- Sequential equilibria
 - Complicated
- Monte Carlo game-tree generation, state aggregation
 - example: Bridge programs
- Information-set search
 - compute a best response to opponent’s strategy
 - paranoid and overconfident opponent models
 - results in kriegspiel, P-games, N-games, kalah
- Brief discussion of poker