CMSC724: Parallel/Distributed Databases1; MapReduce

Amol Deshpande

University of Maryland, College Park

March 15, 2011

1Based on notes from Joe Hellerstein
Proposals in late 70’s, early 80’s for specialized hardware

- **Database Machines: An idea whose time has passed?**
 - Boral, DeWitt, 1983

- Processor-per-track:
 - Database specific storage
 - Evaluate selections directly on the CPs etc...

- Processor-per-head
 - Need parallel readout
 - Combined with indexes, gives good performance

- Off-the-track
 - Something like a shared-memory machine
 - Used special DB-specific processors
Database Machines

- Didn’t work
 - Processor-per-track:
 - Not cost-effective
 - Based on fixed-head disks, or solid-state storage
 - Processor-per-head
 - Parallel readouts are hard to do ??
 - Off-the-track
 - Disk bandwidth is actually decreasing ??? (maybe true then)
Database Machines

- Didn’t work
 - Processor-per-track:
 - Not cost-effective
 - Based on fixed-head disks, or solid-state storage
 - Processor-per-head
 - Parallel readouts are hard to do ??
 - Off-the-track
 - Disk bandwidth is actually decreasing ??? (maybe true then)
 - Generally, specialized hardware is hard to make work
 - Too expensive, slow-to-evolve, requires a tool set
 - Doesn’t help too much with sorts/joins anyway
 - General-purpose hardware improves faster
 - Soon catches up

- IDISKs ? (late 90’s)
Types of Parallelism

(a) shared memory

(b) shared disk

(c) shared nothing

(d) hierarchical
Types of Parallelism

- **Shared memory**
 - One of the last remaining “cash cows”
 - Direct mapping from uni-processor
 - Data structures shared between processors
 - Process models extend naturally: processes or threads assigned to different processes
 - Cache-coherency can be issues: typically left to the hardware
 - Resurgence as **multi-core**
 - Separate caches, but usually not large enough to call shared-nothing
Types of Parallelism

- **Shared memory**
 - One of the last remaining “cash cows”
 - Direct mapping from uni-processor
 - Data structures shared between processors
 - Process models extend naturally: processes or threads assigned to different processes
 - Cache-coherency can be issues: typically left to the hardware
 - Resurgence as *multi-core*
 - Separate caches, but usually not large enough to call shared-nothing

- **Shared disk**
 - Increasingly common because of SAN (storage area network)
 - Better failure behavior (since data still available)
 - Distributed lock managers, cache-coherency etc...
Types of Parallelism

- **Shared nothing**
 - Perhaps most common and most scalable
 - Horizontal data partitioning
 - Good partitioning schemes essential
 - More burden on the DBA
 - Query processing and optimization challenging
 - Partial failures
 - Option 1: Can skip the data on the machine that failed
 - Option 2: Bring down the whole system ("Data skip")
 - Option 3: Redundancy (usually "hot standby")
Types of Parallelism

- Shared nothing
 - Perhaps most common and most scalable
 - Horizontal data partitioning
 - Good partitioning schemes essential
 - More burden on the DBA
 - Query processing and optimization challenging
 - Partial failures
 - Option 1: Can skip the data on the machine that failed
 - Option 2: Bring down the whole system (“Data skip”)
 - Option 3: Redundancy (usually “hot standby”)

- NUMA (Non-uniform Memory Architecture)
 - Processors have different access costs for different parts of memory
 - Option 1: ignore non-uniformity (treat as shared-memory)
 - Option 2: minimize cross-processor access to memory (treat as shared-nothing/shared-disk)
Database operations “embarrassingly parallel”

Speedup vs Scaleup

- Speedup: old time/new time
- Scaleup: how many more queries/how much larger query can you solve
Database operations “embarrassingly parallel”

Speedup vs Scaleup
- Speedup: old time/new time
- Scaleup: how many more queries/how much larger query can you solve

Types of parallelism:
- Pipelined
 - Each “operator” on a different processor
 - Easier to setup, but low parallelism
- Partitioned
 - Split relations horizontally, replicate the operators
 - Exploits all processors, but much harder to setup
 - Optimization messy: Need to make decisions about how to split etc.
Storage: Round-robin vs Hash-based vs Range-based
- Bubba used “heat” to partition

Barriers to linearity
- Startup overheads (remember Amdahl’s law)
- Interference
 - Communication overhead, waiting on queues etc..
 - If the interference just 1%, the maximum speedup < 37

Skew
- Partitioning may turn out to be non-uniform (common cause: duplicates)
- Solution 1: Carefully design hash functions
- Solution 2: Use a very fine-grained partitioning function, and adjust the assignment of partitions to processors
Autonomy?
- Not autonomous, centralized decision-making

Concurrency/locking?
- Two-phase locking (2PL)
- Probably two-phase commit (2PC)
- Centralized deadlock detection

Recovery
- ARIES-based (similar to centralized)

Failures
- Chained declustering
- Many similarities to RAID
Concepts...

- Autonomy ?
 - Not autonomous, centralized decision-making

- Concurrency/locking ?
 - Two-phase locking (2PL)
 - Probably two-phase commit (2PC)
 - Centralized deadlock detection

- Recovery
 - ARIES-based (similar to centralized)

- Failures ?
 - Chained declustering
 - Each relation partition replicated on one other site
 - Many similarities to RAID
New operators: Hash joins, replicate-all strategy etc...

Left-deep trees good for pipelining

- Beware: Some people (eg. DeWitt) calls these “right-deep”

Selections: Indexes etc (individual at each site)

Joins: Hash joins, replicate-all

- Symmetric hash join operator
Query execution

- New operators: Hash joins, replicate-all strategy etc...
- Left-deep trees good for pipelining
 - Beware: Some people (eg. DeWitt) calls these “right-deep”
- Selections: Indexes etc (individual at each site)
- Joins: Hash joins, replicate-all
 - Symmetric hash join operator
- Sorting
 - Sort partitions in parallel, merge is computationally trivial
- Aggregation: Do separately, and combine
 - Can all aggregates be done like this?
Engineering issues

- Re-use existing code
- Gamma: Split/merge operators
- Volcano:
 - Exchange operator
 - Allows arbitrary interleavings
 - An operator can directly call another operator (within the process), across processes or across network

Data-driven vs Demand-driven dataflows (pull vs push)

Semaphores used for controlling producer vs consumer rates (flow control)

Also, rule-based extensible optimizer (became the basis for MSSQL Server Optimizer framework)

Later work by Mehul Shah on extending Exchange
Engineering issues

- Re-use existing code
- Gamma: Split/merge operators
- Volcano:
 - Exchange operator
 - Allows arbitrary interleavings
 - An operator can directly call another operator (within the process), across processes or across network
 - Data-driven vs Demand-driven dataflows (pull vs push)
 - Semaphores used for controlling producer vs consumer rates (flow control)
 - Also, rule-based extensible optimizer (became the basis for MSSQL Server Optimizer framework)

Later work by Mehul Shah on extending Exchange
Query optimization

- Much larger plan space
 - Need to worry about partitioning, different indexes at different sites..

- Cost metric:
 - Communication cost?
 - Response time is not a nice metric
 - Conflicts with traditional total work metric
 - May prefer to optimize for total work, and handle more queries instead

2-phase optimization (XPRS)
- Phase 1: Optimize for total work
- Phase 2: Parallelize the plan

Load balancing/skew: Recursive partitioning for hash joins
Query optimization

- Much larger plan space
 - Need to worry about partitioning, different indexes at different sites..

- Cost metric:
 - Communication cost ?
 - Response time is not a nice metric
 - Conflicts with traditional total work metric
 - May prefer to optimize for total work, and handle more queries instead

- 2-phase optimization (XPRS)
 - Phase 1: Optimize for total work
 - Phase 2: Parallelize the plan

- Load balancing/skew: Recursive partitioning for hash joins
Distributed Databases

- R* etc...
- Communication costs much higher
 - Use semi-joins/bloom filters etc
- More autonomy per machine
 - Typically different administrative domains
 - Different schemas, even different machines
- Federated?
 - Mariposa – Used the economic paradigm
 - For query processing, replication etc.
Discussion/Thoughts

- From Curt Monash’s Blog, especially Mapreduce part

- New key industry players in large-scale data analysis/data warehousing
 - Netezza, Aster, Greenplum, Vertica (Stonebraker) etc...
 - Along with Oracle (Exadata), DB2, Teradata, many more
 - Many have a few customers each
Discussion/Thoughts

- From Curt Monash’s Blog, especially Mapreduce part

New key industry players in large-scale data analysis/data warehousing

- Netezza, Aster, Greenplum, Vertica (Stonebraker) etc...
- Along with Oracle (Exadata), DB2, Teradata, many more
- Many have a few customers each

Netezza, Aster, Greenplum offer Mapreduce functionality by now

- Aster: Highly parallel data warehousing solution – very nice whitepaper on Mapreduce
- We will see some syntax later

SIGMOD 2009 paper: A Comparison of Large-scale Data Analysis
Goal: efficient parallelization of various tasks across 1000’s of machines without the user having to worry about the details such as:

- How to parallelize
- How to distribute the data
- How to handle failures
Goal: efficient parallelization of various tasks across 1000’s of machines without the user having to worry about the details such as:
- How to parallelize
- How to distribute the data
- How to handle failures

Basic Idea:
- If you force programs to be written using two primitives (map and reduce), parallelism can be gotten for free
 - Replace: map-reduce with SQL, parallelism with speed/ease-of-use
- More programs than you might think can be written this way
MapReduce: Applications

- From **Nice Overview by Curt Monash**
- Three major classes:
 - Text tokenization, indexing, and search
 - Creation of other kinds of data structures (e.g., graphs)
 - Data mining and machine learning
- See **this blog post** for a long list of applications
- Or See **Hadoop List**
- For Machine Learning algorithms, see **MAHOUT**
Mapreduce

- Users needs to write two key functions:
 - Map: generate a set of (key, value) pairs
 - Reduce: group the pairs by key’s and combine them (GROUP BY)
- Borrowed from Lisp

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
7. When all map tasks and reduce tasks have been completed, the master wakes up the user program. At this point, the MapReduce call in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution is available in the output files (one per reduce task, with file names specified by the user). Typically, users do not need to combine these output files into one file; they often pass these files as input to another MapReduce call or use them from another distributed application that is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures

The master keeps several data structures. For each map task and reduce task, it stores the state (idle, in-progress, or completed) and the identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of intermediate file regions is propagated from map tasks to reduce tasks. Therefore, for each completed map task, the master stores the locations and sizes of the intermediate file regions produced by the map task. Updates to this location and size information are received as map tasks are completed. The information is pushed incrementally to workers that have in-progress reduce tasks.

3.3 Fault Tolerance

Since the MapReduce library is designed to help process very large amounts of data using hundreds or thousands of machines, the library must tolerate machine failures gracefully.

Handling Worker Failures

The master pings every worker periodically. If no response is received from a worker in a certain amount of time, the master marks the worker as failed. Any map tasks completed by the worker are reset back to their initial idle state and therefore become eligible for scheduling on other workers. Similarly, any map task or reduce task in progress on a failed worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their output is stored on the local disk(s) of the failed machine and is therefore inaccessible. Completed reduce tasks do not need to be reexecuted since their output is stored in a global file system.

When a map task is executed first by worker A and then later executed by worker B (because A failed), all workers executing reduce tasks are notified of the reexecution. Any reduce task that has not already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example, during one MapReduce operation, network maintenance on a running cluster was causing groups of 80 machines at a time to become unreachable for several minutes. The MapReduce master simply reexecuted the work done by the unreachable worker machines and continued to make forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures

When the user-supplied map and reduce operators are deterministic functions of their input values, our distributed implementation produces the same output as would have been produced by a nonfaulting sequential execution of the entire program.
Mapreduce: Implementation

- A master for each tasks, assigns tasks to workers
- Data transfers using the file system (by passing file-names)
- Master pings the workers to make sure they are alive
 - If not, reassign the task to some other worker
- Work is divided into a large number of small chunks
 - Similar ideas used in parallel database for handling data skew
- Atomic commits using the file system
Google File System
- A distributed, fault-tolerant file system
- Data divided into blocks of 64MB
- Each block stored on several machines (typically 3)

Mapreduce uses the location information to assign work
Google File System
- A distributed, fault-tolerant file system
- Data divided into blocks of 64MB
- Each block stored on several machines (typically 3)

Mapreduce uses the location information to assign work

Many other optimizations
- Backup tasks to handle “straggler”
- Control over partitioning functions
- Ability to skip “bad” records
Mapreduce

- Has been used within Google for:
 - Large-scale machine learning problems
 - Clustering problems for Google News etc..
 - Generating summary reports
 - Large-scale graph computations

- Also replaced the original tools for large-scale indexing
 - ie., generating the inverted indexes etc.
 - runs as a sequence of 5 to 10 Mapreduce operations
Mapreduce: Thoughts

- **Hadoop**
 - Open-source implementation of Mapreduce
 - Has support for both the distributed file system and Mapreduce
 - University of Maryland is a major player in this
 - Jimmy Lin is running several projects related to NLP
 - If you want to play with this, let me know
 - IBM, Yahoo, other major players interested in this
Mapreduce: Thoughts

- **Hadoop**
 - Open-source implementation of Mapreduce
 - Has support for both the distributed file system and Mapreduce
 - University of Maryland is a major player in this
 - Jimmy Lin is running several projects related to NLP
 - If you want to play with this, let me know
 - IBM, Yahoo, other major players interested in this

- **Cloud Computing**
 - Somewhat vague term, but quite related
Figure 4: Pig Pen screenshot; displayed program finds users who tend to visit high-pagerank pages.

Nevertheless, there still remain cases where GROUP is followed by something other than an algebraic UDF, e.g., the program in Example 3.5, where distributeRevenue is not algebraic. To cope with these cases, our implementation allows for nested bags to spill to disk. Our disk-resident bag implementation comes with database-style external sort algorithms to do operations such as sorting and duplicate elimination of the nested bags (recall Section 3.7).

5. DEBUGGING ENVIRONMENT

The process of constructing a Pig Latin program is typically an iterative one: The user makes an initial stab at writing a program, submits it to the system for execution, and inspects the output to determine whether the program had the intended effect. If not, the user revises the program and repeats this process. If programs take a long time to execute (e.g., because the data is large), this process can be inefficient. To avoid this inefficiency, users often create a side data set consisting of a small sample of the original one, for experimentation. Unfortunately this method does not always work well. As a simple example, suppose the program performs an equijoin of tables A(x,y) and B(x,z) on attribute x. If the original data contains many distinct values for x, then it is unlikely that a small sample of A and a small sample of B will contain any matching x values [3]. Hence the join over the sample data set may well produce an empty result, even if the program is correct. Similarly, a program with a selective filter executed on a sample data set may produce an empty result. In general it can be difficult to test the semantics of a program over a sample data set.

Pig comes with a debugging environment called Pig Pen, which creates a side data set automatically, and in a manner that avoids the problems outlined in the previous paragraph. To avoid these problems successfully, the side data set must be tailored to the particular user program at hand. We refer to this dynamically-constructed side data set as a sandbox data set; we briefly describe how it is created in Section 5.1. Pig Pen’s user interface consists of a two-panel window as shown in Figure 4. The left-hand panel is where the user enters her Pig Latin commands. The right-hand panel is populated automatically, and shows the effect of the user’s program on the sandbox data set. In particular, the intermediate bag produced by each Pig Latin command is displayed.

Figure 4: Pig Pen screenshot; displayed program finds users who tend to visit high-pagerank pages.
Abstract ideas have been known before

See [Mapreduce: A Major Step Backwards](#); DeWitt and Stonebraker

Can be implemented using user-defined aggregates in PostgreSQL quite easily

Top-down, declarative design

The user specifies what is to be done, not how many machines to use etc...
Abstract ideas have been known before

See Mapreduce: A Major Step Backwards; DeWitt and Stonebraker

Can be implemented using user-defined aggregates in PostgreSQL quite easily

Top-down, declarative design

The user specifies what is to be done, not how many machines to use etc...

The strength comes from simplicity and ease of use

No database system can come close to the performance of Mapreduce infrastructure

RDBMSs can’t scale to that degree, are not as fault-tolerant etc...

Again: this is mainly because of ACID

Databases were designed to support it

Most of the Google tasks don’t worry about that
Mapreduce is very good at what it was designed for
 - But may not be ideal for more complex tasks
 - E.g. no notion of “Query Optimization” (in particular, operator order optimization)
 - The sequence of Mapreduce tasks makes it procedural within a single machine
 - Joins are tricky to do
 - Mapreduce assumes a single input
Mapreduce + Databases: Thoughts

- Mapreduce is very good at what it was designed for
 - But may not be ideal for more complex tasks
 - E.g. no notion of “Query Optimization” (in particular, operator order optimization)
 - The sequence of Mapreduce tasks makes it procedural within a single machine
 - Joins are tricky to do
 - Mapreduce assumes a single input

- Trying to force use of Mapreduce may not be the best option

- However, much work in recent years on extending the functionality
 - See Pig project at Yahoo, Map-reduce-merge etc.
From the Aster White Paper

Write two functions using your favorite language

Map and Reduce

Use them directly in SQL

Aster will take care of pipelining, parallel execution etc..

```sql
select token, sum(occurrences) as globalOccurrence
from map ( ON
    select word, count(*) as occurrences
    from WordOccurrences
    group by word )
group by token;
```
Outline

1. Parallel Databases
2. Map Reduce
3. Friends or Foes?
4. Pig Latin
5. Distributed Data Stores/Key-Value Stores
MR: A Major Step Backwards?

- An (in)famous blog post by DeWitt and Stonebraker
 - Discussed why MR wasn’t a new idea, and how most of the concepts were developed in parallel databases a long time ago
 - Still an interesting read
- Later changed their position quite a bit
 - Result: this paper
Key points

- MR very good at extract-transform-load tasks
 - Experiments indicate loading data is much slower in databases
- But not good at tasks that are best suited for DBMSes
- UDF functionality in databases can cover many of other intended MR uses
Possible applications of MR

- (According to the authors)
- ETL and "read once" data sets
 - ETL has typically been distinct from databases
- Complex analytics
- Semi-structured data
- Quick and dirty analyses
 - MR has much shorter latency with such tasks
Architecture differences

- In the representative implementations
- Repetitive record parsing
 - Databases convert data into an internal format
- Compression
- Pipelining vs Materialization
 - Addressed by "Mapreduce Online" line of work
- Another important issue
 - Parallel Databases are very very expensive
Overview

- Something that fits in between SQL and MapReduce
 - To make it easy for programmers to write procedural, non-SQL code
- Open source, on top of Hadoop
- No transactions – read-only analysis queries
- Supports nested data model (i.e., not in 1NF)
 - Allows sets/maps as fields
 - Interestingly: need this for GROUP operator
- UDFs written in Java
Example 1. Suppose we have a table {\texttt{urls}}: (url, category, pagerank). The following is a simple SQL query that finds, for each sufficiently large category, the average pagerank of high-pagerank urls in that category.

\begin{verbatim}
SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10^6
\end{verbatim}

An equivalent Pig Latin program is the following. (Pig Latin is described in detail in Section 3; a detailed understanding of the language is not required to follow this example.)

\begin{verbatim}
good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls)>10^6;
output = FOREACH big_groups GENERATE
 category, AVG(good_urls.pagerank);
\end{verbatim}
Basic Idea: Show the results of the operations on a small sample of the data

Technical challenges: how to make sure that these are actually useful?

- e.g., Joins: if you take random samples of the relations, the result may contain nothing
 - Need to take biased samples

- Pig Pen: a visual debugging environment
Nevertheless, there still remain cases where (CO)GROUP is followed by something other than an algebraic UDF, e.g., the program in Example 3.5, where distributeRevenue is not algebraic. To cope with these cases, our implementation allows for nested bags to spill to disk. Our disk-resident bag implementation comes with database-style external sort algorithms to do operations such as sorting and duplicate elimination of the nested bags (recall Section 3.7).

5. DEBUGGING ENVIRONMENT

The process of constructing a Pig Latin program is typically an iterative one: The user makes an initial stab at writing a program, submits it to the system for execution, and inspects the output to determine whether the program had the intended effect. If not, the user revises the program and repeats this process. If programs take a long time to execute (e.g., because the data is large), this process can be inefficient. To avoid this inefficiency, users often create a side data set consisting of a small sample of the original one, for experimentation. Unfortunately this method does not always work well. As a simple example, suppose the program performs an equijoin of tables A(x,y) and B(x,z) on attribute x. If the original data contains many distinct values for x, then it is unlikely that a small sample of A and a small sample of B will contain any matching x values [3]. Hence the join over the sample data set may well produce an empty result, even if the program is correct. Similarly, a program with a selective filter executed on a sample data set may produce an empty result. In general it can be difficult to test the semantics of a program over a sample data set.

Pig comes with a debugging environment called Pig Pen, which creates a side data set automatically, and in a manner that avoids the problems outlined in the previous paragraph. To avoid these problems successfully, the side data set must be tailored to the particular user program at hand. We refer to this dynamically-constructed side data set as a sandbox data set; we briefly describe how it is created in Section 5.1. Pig Pen's user interface consists of a two-panel window as shown in Figure 4. The left-hand panel is where the user enters her Pig Latin commands. The right-hand panel is populated automatically, and shows the effect of the user's program on the sandbox data set. In particular, the intermediate bag produced by each Pig Latin command is displayed. Suppose we have two data sets: a log of page visits, visits: (user, url, time) and a catalog of pages and their pageranks, pages: (url, pagerank). The program shown in Figure 4 finds web surfers who tend to visit high-pagerank pages. The program joins the two data sets after first running the log entries through a UDF that converts urls to a canonical form. After the join, the program groups tuples by user, computes the average pagerank for each user, and then filters users by average pagerank.

The right-hand panel of Figure 4 shows a sandbox data set, and how it is transformed by each successive command. The main semantics of each command are illustrated via the sandbox data set: We see that the JOIN command matches visits tuples with pages tuples on url. We also see that grouping by user creates one tuple per group, possibly containing multiple nested tuples as in the case of Amy. Lastly we see that the FOREACH command eliminates the nesting via aggregation, and that the FILTER command eliminates Fred, whose average pagerank is too low.

If one or more commands had been written incorrectly, e.g., if the user had forgotten to include group following FOREACH, the problem would be apparent in the right-hand panel. Similarly, if the program contains UDFs (as is common among real Pig users), the right-hand panel indicates whether the correct UDF is being applied, and whether it...
1. Parallel Databases
2. Map Reduce
3. Friends or Foes?
4. Pig Latin
5. Distributed Data Stores/Key-Value Stores
Motivation/Issues

- Geared toward the second use case
 - Large-scale web application that need real-time access
 - With a few ms latencies (e.g., Facebook == 4ms for reads)
- Problems with using databases
 - Too slow
 - Don’t need ACID properties (??)
 - Too expensive
Interesting numbers (http://highscalability.com)

- Twitter: 177M tweets sent on 3/1/2011 (nothing special about the date), 572,000 accounts added on 3/12/2011
- Dropbox: 1M files saved every 15 mins
- Stackoverflow: 3M page views a day (Redis for caching)
- Wordnik: 10 million API Requests a Day on MongoDB and Scala
- Mollom: Killing Over 373 Million Spams at 100 Requests Per Second (Cassandra)
- Facebook’s New Real-time Messaging System: HBase to Store 135+ Billion Messages a Month
 - Interestingly: decided to move away from Cassandra because not happy with the eventual consistency model
- Reddit: 270 Million Page Views a Month in May 2010 (Memcache)
Motivation/Issues: CAP

- Distributed systems
- CAP theorem: can have two of: consistency, availability, and tolerance to network partitions
 - Originally a conjecture (Eric Brewer), but made formal later (Gilbert, Lynch, 2002)
Motivation/Issues: CAP

- Distributed systems
- CAP theorem: can have two of: consistency, availability, and tolerance to network partitions
 - Originally a conjecture (Eric Brewer), but made formal later (Gilbert, Lynch, 2002)
- Theorem: *It is impossible in the asynchronous network model to implement a read/write data object that guarantees the following properties:*
 - **Availability**
 - **Atomic consistency in all fair executions (including those in which messages are lost).**
 - In other words, if there is a network partition, we can:
 - Go down (sacrifice availability), or
 - Allow inconsistency
Motivation/Issues: Distributed transactions

- Distributed transactions: If a transaction spans multiple machines, how to do it?
- Correct solution: Two-phase Commit
 - Follow a protocol exchanging multiple rounds of messages
 - Problems: high latency, no tolerance to partitions
 - Three-phase commit solves the latter problem with more rounds of messages
- A simpler solution
 - Send the update to a bunch of geographically distributed machines – pray no meteoroid strikes!
- Generally very hard to provide ACID properties with low latencies
 - Especially for transactions spanning multiple sites
Replicas are needed

How to keep them updated?

- Eager/synchronous replication: use two-phase commit across the replicas
 - surely you are joking..
 - Sometimes called active-active

- Lazy/asynchronous replication (*master-slave*)
 - Choose one replica as the *master*
 - Propagate the updates to the *slave* replicas in background
 - Usually done using *log shipping*
 - Results in possibility of stale reads
Amazon formalized as:

- the storage system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated value
- May lead to out-of-order reads
- DNS is an example
- Many key-value stores (including the most popular ones like MongoDB)
Eventual Consistency

- Amazon formalized as:
 - *the storage system guarantees that if no new updates are made to the object, eventually all accesses will return the last updated value*
 - May lead to out-of-order reads
 - DNS is an example
 - Many key-value stores (including the most popular ones like MongoDB)

- But many points in between full consistency and eventual consistency with out-of-order reads
 - e.g., *timeline consistency* that PNUTS provides (i.e., no out-of-order reads)

- Same system may support multiple options, under multiple configurations
 - E.g., MongoDB, Cassandra (at least now), PNUTS etc...
Numerous systems designed in last 10 years that look very similar
- Differences often subtle, and if not hard to pin down, hard to understand
- Often the differences are about the implementations

Often called key-value stores
- The main provided functionality is that of a hashtable

Some earlier solutions
- Still very popular
- Memcached + MySQL + Sharding
 - Sharding == partitioning
 - Store data in MySQL – use Memcached to cache the data
 - Memcached not really a database, just a cache
 - All kinds of consistency issues
 - But... very very fast
Tokyo, Redis
- Very efficient key value stores

BigTable (Google), HBase (Apache open source), Cassandra (original Facebook, open sourced), Voldemort (originally LinkedIn)...
- At least in original iterations, focused on performance
- Cassandra later developed more sophisticated *tunable* consistency (maybe others too)

PNUTS (Yahoo!)
- Focus on geographically distributed stuff
 - Easier to deal with some issues if we assume everything is a single data center
- Support tunable consistency for reads: *read-any*, *read-latest* etc..
- Form of master-slave replication
- No real support for multi-record transactions
MySQL + Memcached: End of an era?

If you look at the early days of this blog, when web scalability was still in its heady bloom of youth, many of the articles had to do with leveraging MySQL and memcached. Exciting times. Shard MySQL to handle high write loads, cache objects in memcached to handle high read loads, and then write a lot of glue code to make it all work together. That was state of the art, that was how it was done. The architecture of many major sites still follow this pattern today, largely because with enough elbow grease, it works.

- Digg moved to Cassandra in 2009; LinkedIn to Voldemort
- Twitter moved to Cassandra recently

.. the rate of growth is accelerating.. a system in place based on shared mysql + memcache .. quickly becoming prohibitively costly (in terms of manpower) to operate.
Megastore (Google)
- Recent CIDR paper
- Built on top of BigTable – powers Google App Engine
- Full ACID using Paxos
 - Using active-active replication/two-phase commit
 - However many details to make this fast
- Supports notion of *entity groups*
 - e.g., all emails of a user is a single entity group
- Transactions that span a single entity group are generally fine
- Transactions that span multiple entity groups would use two-phase commit – not preferred
VoltDB (Stonebraker startup)

- Rethinking OLTP databases altogether
- Provides full ACID with eager replication
 - Just like Megastore, better if your transaction does not span multiple cores
- Remove all obstacles to efficiency
 - No locking, no latching, no buffer management, no recovery
- Give up on "tolerance to network partitions"
 - How often they happen anyway?
- Very nice talk by Stonebraker

- Six Urban Myths about SQL
- Very nice analysis with some counter-points
Mongodb

- Perhaps the poster child of key-value NoSQL stores
- Very scalable
- Document-oriented storage
 - JSON-style documents
 - JSON may be becoming more popular than XML as the data interchange format
- Some form of eventual consistency
Two interesting points

- **Non-determinism**
 - Why allow any kind of non-determinism in the system?
 - What if we enforce that a transaction that enters the system first should commit first?
 - Would simply certain things

- **Problem: Locking**
 - If a transaction is delayed or blocked, other transactions (after it) should be allowed to continue
 - But what if all transactions are extremely short? (See Abadi’s VLDB 2010 paper)

- **Commutativity**
 - Consider: Transaction 1 increases A by 100, Transaction B increases it by 1%
 - They are not commutative
 - This causes problems in distributed settings
 - Disallowing it may simplify things