1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Assume single-user, single-threaded
 - Concurrency managed by lower layers

Steps:
 - Parsing: attribute references, syntax etc...
 - Catalog stored as “denormalized” tables
 - Rewriting:
 - Views, constants, logical rewrites (transitive predicates, true/false predicates), semantic (using constraints), subquery flattening

 - Optimizer – Later
 - Executor: Next
Figure 2. Query processing steps.
Lot of confusion between left-deep vs right-deep
Careful when reading some of the early work
Think about hash joins
One of them builds hash tables on intermediate relations, one only on base tables

Figure 4. Left-deep, bushy, and right-deep plans.
Outline

1 Query Processing
 • Iterator Model

2 Data Warehouses

3 Column Stores vs Row Stores

4 Query Optimization

5 Adaptive Query Processing

6 Data Streams
 • Motivation
 • Triggerman
 • Major Concepts
 • New Operators
 • Eddies

7 Sketches
Options for query processing

- Materialize the results after each operator
- Each operator runs in a separate process; use inter process communication
 - Use "queues" in between the operators to pass data
 - Too many context switches, but better parallelism
 - See the River system (Berkeley)
- Use threads?
 - Issues with blocking for I/Os
- Translation programs
 - Translate the plan into a single iterative program
 - Probably not feasible given the complexity of operators
- Iterator model
 - Single process/thread
Each operator implementation supports:

- `init/open()`
 - Typically no data involved (although Graefe’s examples do that)

- `get_next()`
 - Return the next output tuple; may call `get_next()` on children
 - First call typically builds hash tables, sorted runs etc...

- `end/close()`
- `rescan()`
 - Often needed (e.g., for nested loops)
Table 1. Examples of Iterator Functions

<table>
<thead>
<tr>
<th>Iterator</th>
<th>Open</th>
<th>Next</th>
<th>Close</th>
<th>Local State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td><code>open</code> input</td>
<td>call <code>next</code> on input; format the item on screen</td>
<td><code>close</code> input</td>
<td></td>
</tr>
<tr>
<td>Scan</td>
<td>open file</td>
<td>read next item</td>
<td>close file</td>
<td>open file descriptor</td>
</tr>
<tr>
<td>Select</td>
<td><code>open</code> input</td>
<td>call <code>next</code> on input until an item qualifies</td>
<td><code>close</code> input</td>
<td></td>
</tr>
<tr>
<td>Hash join (without overflow resolution)</td>
<td>allocate hash directory; <code>open</code> left "build" input; build hash table calling <code>next</code> on build input; <code>close</code> build input; <code>open</code> right "probe" input</td>
<td>call <code>next</code> on probe input until a match is found</td>
<td><code>close</code> probe input; deallocate hash directory</td>
<td>hash directory</td>
</tr>
<tr>
<td>Merge-Join (without duplicates)</td>
<td><code>open</code> both inputs</td>
<td>get <code>next</code> item from input with smaller key until a match is found</td>
<td><code>close</code> both inputs</td>
<td></td>
</tr>
<tr>
<td>Sort</td>
<td><code>open</code> input; build all initial run files calling <code>next</code> on input; <code>close</code> input; merge run files until only one merge step is left</td>
<td>determine next output item; read new item from the correct run file</td>
<td>destroy remaining run files</td>
<td>merge heap, open file descriptors for run files</td>
</tr>
</tbody>
</table>
DAGs: use "split" operator

- Multiple consumers – buffer each input tuple till all consumers have seen it
- Can use a bitmap for this purpose
- Only need to spool to disks if consumer rates vary too much

No parallelism – what about multi-core?

- Also, shared-nothing parallel databases (i.e., no shared memory)?

Use special "Exchange" operators
Figure 26. Operator model of parallelization.
Two key strategies underlying almost all operators

Critical differences:
- Hashing can be pipelined vs sorting is *blocking*
- Sorting-based operators produce output in *sorted order*

Can be seen as duals of each other
- Very nice observations in the paper on this topic
External Sorting

Basic idea:
- Create sorted "runs"
- Merge the sorted "runs"

How to create runs?
- (1) Read as much as memory; use quicksort
- (2) Use replacement selection
 - Option 2 much better – produces runs that are much larger, and hence smaller number of runs
 - If the input almost sorted, can get away with just one run
Graefe has a survey on this topic alone

Some interesting points:

- Need to worry about random vs sequential I/Os
 - In case of sorting: when merging, random I/O is required
- General technique: read many blocks at once
 - For sorting: that reduces the number of runs you can merge at once
 - However in some cases, that may be better since random I/O so much slower
 - Probably not a big deal now-a-days
- Hybrid hash seems superior when the amount of data just larger than memory
- However "reverse" writes help (can be explicitly coded)
 - Write the run in reverse order
 - The tail of the run will be in the buffer when merging so avoid that I/O
Hashing

- Very good option if the table fits in memory
 - For hash joins, only the smaller input needs to fit in memory
- If not, then need to do in multiple phases
- Hybrid hashing
 - Optimal when the (build) relation just larger than memory
 - Can keep most of the hash table in memory, and spill some to disk
- Some issues to keep in mind
 - Quality of hash functions
 - Must deal with skew
Disk Access

- **Sequential Scan**
 - Push down selections and apply as soon as possible
 - Also push down projections
 - Interesting issues in choosing the order in which to apply selection predicates

- **Associate (Index) Access**
 - B+-Tree indexes very widely used
 - Data warehouses often build them on every column
 - Other indexes not typically supported in database systems even today
 - Some spatial-oriented databases support R-Trees or variants
 - Perhaps the key reason is that the complexity is not seen as worth the effort
 - Especially complexity of dealing with concurrency and recovery issues
Index-only Scans

Often we don’t need to retrieve the records, the lowest level of index has sufficient information

Index-ANDING and Index-ORING

Important optimizations

e.g., imagine two predicates on a relation, both on columns with indexes

Can get a list of RID (record ids) from both of them, intersect (or union), sort, and retrieve the tuples in one pass
What happens if the underlying storage device is not a standard disk?

RAID
- Very commonly used in large server deployments
- Many issues with use in databases
- The costs of reads and writes are different
- Failure behavior is different from standard disks (since RAID automatically recovers)
- Using write caches can be problems
- Writing "parity" blocks not required for temporary data (e.g., sorted runs etc)

- Many of these hidden underneath an abstraction layer
- Database vendors must deal with this
- Flash?
Executor: Operators

- Selections: Usually pushed down if possible
 - SARGABLE predicates
 - Advantages in not doing so (for expensive predicates)

- Project
 - If no duplicate elimination, then trivial
 - If duplicate elimination, can use sorting (preferred) or hashing
 - Note that: this suggests that sort-merge joins may be preferable as the child operator
 - Decision made by the optimizer (“interesting orders”)

Aggregates and Group by (usually together)
- Distributive (MAX, MIN, COUNT, SUM): Constant state
- Algebraic (AVERAGE): Can use COUNT and SUM
- Holistic (MEDIAN, QUANTILE): May need to gather the whole input

Typically implemented using sorting, sometimes hashing

PostgreSQL allows defining user-defined aggregates:

User-defined Aggregates in PostgreSQL

Basically need to define an “accumulator” function..
- Take in one tuple at a time (get_next())
- Eventually produce the aggregate (one by one)
Executor: Operators

Joins
- Equijoin (natural join): Nested loops, Index nested loops, hash join (classic, GRACE, hybrid), merge join
- Non-equijoins?
 - Sort-merge joins in some cases (e.g. \(\text{ABS}(R.a - S.b) < 5 \))
 - Index nested loops in some cases (e.g. index on \(R.a \), may use for \(R.a < S.a \))
 - Nested loops otherwise (always works)
- Join variants: Outerjoins, semijoins, Anti-joins etc...
 - Usually same algorithms as above, with minor modifications (may even be an "if" in the code)
Executor: Operators

<table>
<thead>
<tr>
<th>Output</th>
<th>Match on all Attributes</th>
<th>Match on some Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Difference</td>
<td>Anti-semi-join</td>
</tr>
<tr>
<td>B</td>
<td>Intersection</td>
<td>Join, semi-join</td>
</tr>
<tr>
<td>C</td>
<td>Difference</td>
<td>Anti-semi-join</td>
</tr>
<tr>
<td>A, B</td>
<td>Symmetric difference</td>
<td>Left outer join</td>
</tr>
<tr>
<td>A, C</td>
<td>Anti-join</td>
<td>Right outer join</td>
</tr>
<tr>
<td>B, C</td>
<td>Union</td>
<td>Symmetric outer join</td>
</tr>
<tr>
<td>A, B, C</td>
<td>Union</td>
<td>Symmetric outer join</td>
</tr>
</tbody>
</table>
Executor: Operators

- Set operators: Intersection, Union, Difference etc..
 - Variants of join operators (different logic based on duplicate eliminate or not)
 - Note that: SQL is bag algebra
- Others?
 - Top-K, CUBE etc...
 - List goes on
Much commonality between operators

Usually a smaller set of Physical Operators

- e.g. TEMP is a materialization operator: Reads all tuples from the child operator and stores them somewhere by repeatedly issueing get_next()

- Similarly, HASH, SORT etc..

See An overview of DB2 Optimizer for more details
Blocking operators vs Pipelining operators

- Important: dictates memory use, time to first tuple
 - TEMP, SORT are blocking
- All operators in a pipeline must be in memory, so higher memory requirements
- Some operators are naturally blocking
 - DISTINCT (duplicate elimination)
 - AGGREGATES (can’t really produce a COUNT without seeing all input)
- Increasingly prefer pipelining operators (larger memories)
Executor

- “get_next()” iterator model
 - Narrow interface between iterators
 - Can be implemented independently
 - Assumes non-blocking-I/O

- Memory
 - Usually managed carefully: swapping not good
 - Sorting can exploit the memory naturally to the fullest
 - Hashing needs careful partitioning

- Some low-level details
 - Tuple-descriptors
 - Very carefully allocated memory slots
 - “avoid in-memory copies”
 - Pin and unpin
Commercial systems (also PostgreSQL) uses context-based memory allocators

Each operator creates its own context
- Allocates memory in that context (through special calls: "pmalloc" for PostgreSQL)
- Entire context deallocated at once (after finished)
- Essentially a custom garbage collector

Data movement between operators
- Each operator typically has a few "slots" it uses for data movement that are shared
- When it is called by a parent operator, the next tuple is copied into a shared slot
- Thus, avoid creation of new objects

Any long-lived data (e.g., hash tables) copied into operator contexts
1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Data Warehouses

- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, updated at night
 - Geared toward business analytics, data mining etc...
- Heavily used and heavily optimized
 1. Materialized views (summary tables, data cubes)
 2. New types of indexes
 3. New join techniques geared toward “star” (or “snowflake”) schemas
 4. Compressed storage techniques
- Key observation: Read-only, so updating not an issue
OLAP operations include rollup (increasing the level of aggregation) and drill-down (decreasing the level of aggregation). OLAP requires special data organization, access methods, multidimensional data models and operations typical of relational databases, and they support extensions to SQL. Special access and implementation methods to efficiently implement the multidimensional data model and operations are used.

There are two main types of OLAP servers: (MO) Multidimensional Online Analytical Processing (MDOLAP) servers, which directly store multidimensional data in special data structures (e.g., arrays) and implement the OLAP operations over these special data structures; and (ROLAP) servers, which assume that data is stored in relational databases, and they support extensions to SQL (e.g., SQL/MM). These servers may be implemented on standard or commercial DBMSs targeted for OLTP. ROLAP servers are preferred when data is already stored in relational databases, and they are easier to implement because of their close resemblance to existing relational DBMSs.

OLAP requires special data organization, access methods, multidimensional data models and operations. Building an enterprise warehouse is a long and complex integration problem in the long run, if a complete business model is not developed. Some organizations may take many years to succeed. Some organizations build a data warehouse for a subset of the business. Data warehouses might be implemented on standard or commercial DBMSs targeted for OLTP. It is for all these reasons that data warehouses are implemented separately and managed by one or more warehouse servers, which settle for architectural alternatives exist. Many organizations want to implement an integrated enterprise warehouse that collects information about all subjects (e.g., customers, products, sales, assets, personnel) spanning the whole organization. However, building an enterprise warehouse is a long and complex integration problem. Some organizations may take many years to succeed. Some organizations build a data warehouse for a subset of the business. Data warehouses might be implemented on standard or commercial DBMSs targeted for OLTP. It is for all these reasons that data warehouses are implemented separately and managed by one or more warehouse servers, which settle for architectural alternatives exist. Many organizations want to implement an integrated enterprise warehouse that collects information about all subjects (e.g., customers, products, sales, assets, personnel) spanning the whole organization. However, building an enterprise warehouse is a long and complex integration problem in the long run, if a complete business model is not developed.
Data Warehouses

- Extract-Transform-Load (ETL)
 - Data cleaning, auditing, integrity constraints
 - Semantic heterogeneity
 - Issues like entity resolution, schema mapping/matching, cleaning etc..

- Load/Refresh:
 - Typically done periodically
 - Batch loading, so can heavily optimize the indexes
 - E.g. If using a B+-tree, bulk-loading can result in much better indexes, than inserting one at a time
 - Refresh:
 - Usually done incrementally, at night or something

- Real-time analysis? Typically not done today
The multidimensional data model grew out of the view of business data popularized by PC spreadsheet programs that were extensively used by business analysts. The spreadsheet was one of the motivating factors that led to the development of data warehouses. Indeed, the Essbase product of Arbor Corporation uses the spreadsheet as the front-end tool for its multidimensional database server. In addition, there are query environments that provide its multidimensional coordinates, and stores the summary data in a fact table that consists of the dimensions city and the day of sale.

Most data warehouses use a star schema that reflects the multidimensional views of data. The multidimensional schema of Figure 2 represented in a multidimensional spreadsheet where each row corresponds to a sale. Let there be one column for each dimension and an extra column that corresponds to the measure, e.g., sales.

We shall briefly discuss some of the popular operations that are supported by the multidimensional spreadsheet and defining computed attributes. These environments use stored procedures to implement the multidimensional operations efficiently over large multi-gigabyte databases. However, the database designs recommended by ER diagrams are inappropriate for decision support environments. However, the database designs recommended by Entity Relationship diagrams and normalization techniques are popularly used for database design in OLTP systems where efficiency in querying and in loading data (including incremental loads) are important.

Star schemas do not explicitly provide support for attribute hierarchies. Snowflake schemas provide a refinement of star schemas that reflect the multidimensional views of data.

Figure 3 shows an example of a star schema. The other popular operators include slice and dice, rollup, and drill-down. Consider the sales data for the year 1999. The first dimension is city and the second dimension is year. The point (x,y) will represent the aggregated sales for city x in the year y. Thus, what were values in the original table that consists of columns that correspond to attributes of the database server. In addition, there are query environments that optimize the access patterns depending on the back end database server. These applications often use raw data access tools and data mining tools that are often used as front end tools to data warehouses.
Data Warehouses: Snowflake Schema

Figure 4. A Snowflake Schema.

Figure: A Snowflake Schema (From Chaudhuri, Dayal; SIGMOD Record, 1997)
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations

Many queries are of the form:
- Join the Facts table with some of the dimension tables
- Selections on the dimension table attributes (e.g. state = 'MD')
- Possibly selection on the fact table
- Group by on some of the dimension table attributes (e.g. ProdName)
- Aggregate on a main Facts table attribute (e.g. quantity)
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations
- Many queries are of the form:
 - Join the Facts table with some of the dimension tables
 - Selections on the dimension table attributes (e.g. state = 'MD')
 - Possibly selection on the fact table
 - Group by on some of the dimension table attributes (e.g. ProdName)
 - Aggregate on a main Facts table attribute (e.g. quantity)
Disk Access: Bit-map indexes

- Variant Indexes; O’Neil, Quass; SIGMOD’97
- Specialized indexes for supporting summary aggregate queries
- Different types of indexes:
 - Traditional Value-List Indexes
 - Bitmap Indexes
 - Projection Indexes
 - Very similar to Column-based storage (much research last few years)
 - Bit-sliced Indexes
 - Join Indexes
- Key observation: Read-only database, so can build as many indexes as you want
Key idea: Given a **property** over a domain, the following two are interchangeable and complementary:
- a **list of values**
- a **bitmap** over the domain
Value-List/Bitmap Index

- Key idea: Given a property over a domain, the following two are interchangeable and complementary
 - a list of values
 - a bitmap over the domain
- In our case:
 - Domain: The set of all RIDs
 - Property: A predicate $R.a = 'Sports'$
- If the number of RID that satisfy the property is:
 - small: store as a list of RIDs
 - large: store as a bitmap over the RIDs
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions

So

Each B+-Tree page contains a portion of the bitmap over the RIDs

If the number of 1's is small, convert to an RID-list. The tipping point is when the number of 1's is < 1/32 of the size. At that point, the RID-list exactly fits in the disk page (48000/32 = 1500, 1500 * 4 = 6K). This is always true regardless of the page size. Segmentation also helps with space storage... if an entire segment is all 0's, don't store it.
Value-List/Bitmap Index: Segmentation

- Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions
- So
 - Each B+-Tree page contains a portion of the bitmap over the RIDs
- If the number of 1’s is small, convert to an RID-list
 - The tipping point is when the number of 1’s is $< 1/32$ of the size.
 - At that point, the RID-list exactly fits in the disk page
 - $(48000/32 = 1500, 1500 \times 4 = 6K)$
 - This is always true regardless of the page size
- Segmentation also helps with space storage... if an entire segment is all 0’s, don’t store it
Selections on the table return bitmaps
 - AND, OR, NOT very fast on bitmaps
 - Result called a Foundset: B_f (the domain is the Facts Table)

Next step: Aggregate (recall almost all queries compute aggregates)
 - Can perform directly on the bitmap in some cases (COUNT)
 - Otherwise use projection indexes
 - OR use a bit-sliced index
shcount: count the number of ones in the binary representation

Algorithm 2.1. Performing COUNT with a Bitmap

/* Assume Bl[] is a short int array
 overlaying a Foundset Bitmap */
count = 0;
for (i = 0; i < SHNUM; i++)
 count += shcount[Bl[i]];
/* add count of bits for next short int */

Figure: Bitmap Index
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Overview

- Traditional databases row-oriented
 - Fast for writes, but not for reads
 - Redundant columns accessed
 - Index-only scans help but are not sufficient
- Column-stores
 - Store data in columnar fashion
 - Better I/O and CPU efficiency (fewer cache misses)
 - Tuple reconstructions costs quite high
 - Better for scan queries (i.e., queries that don’t focus on just a few tuples)
 - Big push toward this in recent years with increasing trend toward data warehousing and analytics
 - Many commercial systems support some mix of columnar- and row-oriented storage

Very nice overview article by Dan Abadi
C-Store

- Commercialized as Vertica (recently acquired by HP)
- Key features (from VLDB 2005 paper – may have changed since):
 - Hybrid architecture: A Write Store (WS) optimized for inserts, and a Read Store (RS) optimized for querying
 - Data moved from WS to RS in a periodic fashion
 - Columns stored in possibly different sort orders
 - A single column may be stored multiple times in different sort orders
 - For read efficiency
 - Heavy use of compression
 - Designed for a shared-nothing environment
 - High availability through use of overlapping projections
 - Use of snapshot isolation to avoid 2PC and locking
"Projection" defined by:

- An anchor table
- A list of attributes from anchor table
- A list of attributes from other tables s.t. the attribute values are uniquely defined
 - Through a sequence of key-foreign key joins
- A sort order

No. of tuples in a projection = No. of tuples in the anchor table

Projections may be horizontally partitioned into segments based on the sort key
Example:

- \(EMP(name, age, salary, dept), DEPT(dname, floor) \)
- Possible list of projections:
 - \(EMP1(name, age | age) \) – *age is the sort key*
 - \(EMP2(dept, age, DEPT.floor | DEPT.floor) \)
 - \(DEPT.floor \) uniquely associated with a tuple from the anchor table
 - \(EMP3(name, salary | salary) \)
 - \(DEPT1(dname, floor | floor) \)
C-Store

- Need mappings between different projections to be able to construct original rows
 - Called "join indexes"
- Late materialization
 - At some point, you must stitch the columns of a single table together
 - Try to postpone because that operation is expensive
 - e.g., apply selection predicates first, and then only constructs tuples that match
C-Store

- Need mappings between different projections to be able to construct original rows
 - Called "join indexes"
- Late materialization
 - At some point, you must stitch the columns of a single table together
 - Try to postpone because that operation is expensive
 - e.g., apply selection predicates first, and then only constructs tuples that match
- Block iteration
 - As opposed to get_next() interface, pass entire block of tuples between operators
 - Avoids per-tuple overheads
 - Can be done in row-stores as well, but easier in column-stores
Comparing column-stores to row-stores

- Ways we can try to get column-store benefits in a row-store
 - Vertically partition each table into a collection of two-column tables: (key, attribute)
 - Using a synthetic position attribute instead of key may be better
 - Build indexes on every attribute and use index-only scans
 - Used aggressively in commercial systems, although PostgreSQL doesn’t support them
 - Aggressive use of materialized views
 - Need to know the query workload

- However, results indicate the overheads of all these approaches are too high
Query Processing
 - Iterator Model

Data Warehouses

Column Stores vs Row Stores

Query Optimization

Adaptive Query Processing

Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies

Sketches
Goal: Given a SQL query, find the best physical operator tree to execute the query

Problems:
- Huge plan space
 - More importantly, cheapest plan orders of magnitude cheaper than worst plans
 - Typical compromise: avoid really bad plans
- Complex operators/semantics etc
 - \((R \text{ outerjoin } S) \text{ join } T \neq R \text{ outerjoin } (S \text{ join } T)\)
Query Compilation: Steps

- Parsing: analyze SQL query, detect syntax errors, create internal query representation
- Semantic checking:
 - Validate SQL statement, view analysis, incorporate constraints/triggers etc
- Query rewrite: Modify query to improve performance
- Optimization
- Code generation
Goal: more latitude for optimizer; more efficient processing
Typically done using a rule-based approach
 IBM Query Graph Model paper has details on how it is done
Examples:
 Original: select distinct custkey, name from TPCD.CUSTOMER
 Rewritten: select custkey, name from TPCD.CUSTOMER
 Why? custkey is a key
Original:
- SELECT ps.* FROM partsupp ps
- WHERE ps.ps_partkey IN (SELECT p_partkey FROM tpcd.parts WHERE p_name LIKE 'forest%');

Rewritten:
- SELECT ps.* FROM parts, partsupp ps
- WHERE ps.ps_partkey = p_partkey AND p_name LIKE 'forest%';

Predicate translation:
- WHERE NOT(COL1 = 10 OR COL2 > 3) → WHERE COL1 <> 10 AND COL2 <= 3
Must be careful with distincts and "nulls"

Original:
- SELECT Dept.Name FROM Dept
- WHERE Dept.num-of-machines >=
- (SELECT Count(EMP.*) FROM Emp WHERE Dept.name = Emp.Dept_name)

Rewritten:
- SELECT Dept.Name FROM Dept Join Emp
- GROUP BY Dept.name
- HAVING Dept.num-of-machines < Count(EMP.*)

Must use a left-outer-join
- Otherwise a dept with no employees may cause problems
Query Optimization

- Heuristical approaches
 - Perform selection early (reduce number of tuples)
 - Perform projection early (reduce number of attributes)
 - Perform most restrictive selection and join operations before other similar operations.
 - Don’t do Cartesian products

- INGRES:
 - Always use NL-Join (indexed inner when possible)
 - Order relations from smallest to biggest
A systematic approach

- Define a **plan space** (what solutions to consider)
- A **cost estimation technique**
- An **enumeration algorithm** to search through the plan space
System-R Query Optimizer

- Define a **plan space**
 - Left-deep plans, no Cartesian products
 - Nested-loops and sort-merge joins, sequential scans or index scans

- A **cost estimation technique**
 - Use statistics (e.g. size of index, max, min etc) or magic numbers
 - Formulas for computing the costs

- An **enumeration algorithm** to search through the plan space
 - Dynamic programming
Cost metric

- Typically a combination of CPU and I/O costs
 - The "w" parameter set to balance the two
- Response time (useful in distributed and parallel scenarios)
 - Behaves different from the above total work metric
- Time to first tuple (useful in interactive applications)
Cost metric
 - Typically a combination of CPU and I/O costs
 - The "w" parameter set to balance the two
 - Response time (useful in distributed and parallel scenarios)
 - Behaves different from the above total work metric
 - Time to first tuple (useful in interactive applications)

How about a simpler metric?
 - Count the total number of intermediate tuples that would be generated
 - Independent of access methods
 - Ok in some scenarios, but reasoning about indexes is key in optimization
Dynamic programming

Uses “principle of optimality”

- Bottom-up algorithm
- Compute the optimal plan(s) for each k-way join, $k = 1, ..., n$
 - Only $O(2^n)$ instead of $O(n!)$
- Computes plans for different “interesting orders”
 - Extended to “physical properties” later

Another way to look at it:

- Plans are not comparable if they produce results in different orders
- An instance of multi-criteria optimization
Since then...

Search space
- “Bushy” plans (especially useful for parallelization)
- Cartesian products (star queries in data warehouses)
- Algebraic transformations
 - Can “group by” and “join” commute?
- More physical operators
 - Hash joins, semi-joins (crucial for distributed systems)
- Sub-query flattening, merging views
 - “Query rewrite”
- Parallel/distributed scenarios...
Since then...

- Statistics and cost estimation
 - Optimization only as good as cost estimates
 - Optimizers not overly sensitive ($\pm 50\%$ probably okay)
 - Better to overestimate selectivities
 - Histograms, sampling commonly used
 - Correlations?
 - Ex: where model = “accord” and make = “honda”
 - Say both have selectivities 0.0001
 - Then combined selectivity is also 0.0001, not 0.0000001
 - Learning from previous executions
 - Learning optimizer (LEO@IBM), SITS (MS SQL Server)
 - Cost metric: Response time in parallel databases, buffer utilization...
Since then...

- Enumeration techniques
 - Bottom-up more common
 - Easier to implement, low memory footprint
 - Top-down (Volcano/Cascades/SQL Server)
 - More extensible, typically larger memory footprint etc...
 - Neither work for large number of tables
 - Randomized, genetic etc...
 - More common to use heuristics instead
 - “Parametric query optimization”
Other issues

- Non-centralized environments
 - Distributed/parallel, P2P
 - Data streams, web services
 - Sensor networks??
- User-defined functions
- Materialized views
Adaptive Query Processing

- Why? Traditional optimization is breaking
- In traditional settings:
 - Queries over many tables
 - Unreliability of traditional cost estimation
 - Success, maturity make problems more apparent, critical
- In new environments:
 - e.g. data integration, web services, streams, P2P...
 - Unknown dynamic characteristics for data and runtime
 - Increasingly aggressive sharing of resources and computation
 - Interactivity in query processing
- Note two distinct themes lead to the same conclusion:
 - *Unknowns*: even static properties often unknown in new environments and often unknowable a priori
 - *Dynamics*: environment changes can be very high
- Motivates intra-query adaptivity
Some related topics

- Autonomic/self-tuning optimization
 - Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
 - LEO (@IBM), SITS (@MSR): Learning from previous executions

- Robust/least-expected cost optimization

- Parametric optimization
 - Choose a collection of plans, each optimal for a different setting of parameters
 - Select one at the beginning of execution

- Competitive optimization
 - Start off multiple plans... kill all but one after a while

- Adaptive operators

Low-overhead, evolutionary approaches

- Typically apply to non-pipelined execution
- **Late binding**: Don’t instantiate the entire plan at start
- **Mid-query reoptimization**: At “materialization” points, review the remaining plan and possibly re-optimize
 - More recently, much work/implementation along these lines at IBM
Low-overhead, evolutionary approaches
- Typically apply to non-pipelined execution
- **Late binding:** Don’t instantiate the entire plan at start
- **Mid-query reoptimization:** At “materialization” points, review the remaining plan and possibly re-optimize
 - More recently, much work/implementation along these lines at IBM

Pipelined execution
- No materialization points, so the above doesn’t apply
- The operators may contain complex states, raising correctness issues
- **Eddies**
 - Always guarantee correct execution, but allows reordering during execution
- Much other work in recent years (see the survey)
Data Streams

Why?

Much data generated continuously (growing every day)
 - Financial data
 - Sensors, RFID
 - Network/systems monitoring
 - Video/Audio data
 - etc ...
Data Streams

Why?
- Much data generated continuously (growing every day)
 - Financial data
 - Sensors, RFID
 - Network/systems monitoring
 - Video/Audio data
 - etc...

Need to support:
- High data rates
- Real-time processing with low latencies
- Support for temporal reasoning (time-series operations)
- Data dissemination
- Distributed? (at least data generation)
- etc...
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- Probabilistic modeling; Applying financial models
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to buy
 - We don’t even know how to specify these Multimedia data?

- Online object detection, activity detection
- Correlating events from different streams
Examples of Tasks

- **Continuous (SQL) queries**
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- **Pattern recognition**
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support
Examples of Tasks

- **Continuous (SQL) queries**
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- **Pattern recognition**
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- **Probabilistic modeling; Applying financial models**
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to *buy*
 - We don’t even know how to specify these

Multimedia data?
- Online object detection, activity detection
- Correlating events from different streams
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- Probabilistic modeling; Applying financial models
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to *buy*
 - We don’t even know how to specify these

- Multimedia data?
 - Online object detection, activity detection
 - Correlating events from different streams
Data Streams

- Use traditional DBMS?
- Consider simplest case:
 - Report moving average over last hour every 10 minutes
 - 1. Insert all new items into database
 - 2. Execute the query every 10 minutes

Not easily generalizable to other tasks
E.g. “alert me the moment moving average > 100”?
Typically 1000’s of such continuous queries
Even for one query, too slow and inefficient
Doesn’t reuse work from previous execution
Application-level modules typically used for complex tasks
Data Streams

- Use traditional DBMS?
- Consider simplest case:
 - Report moving average over last hour every 10 minutes
 1. Insert all new items into database
 2. Execute the query every 10 minutes
- Not easily generalizable to other tasks
 - E.g. “alert me the moment moving average > 100”?
- Typically 1000’s of such continuous queries
- Even for one query, too slow and inefficient
 - Doesn’t reuse work from previous execution
- Application-level modules typically used for complex tasks
Data Streams

- Triggers?
 - Similar, but current trigger systems not designed for the required scale

- Publish-Subscribe Systems
 - Similar concepts: Push-based, reactive execution
 - Typically no complex queries
 - Much focus on “dissemination”
Data Streams

- Triggers?
 - Similar, but current trigger systems not designed for the required scale

- Publish-Subscribe Systems
 - Similar concepts: Push-based, reactive execution
 - Typically no complex queries
 - Much focus on “dissemination”

- Major research systems (late 90’s-early 00’s):
 - NiagaraCQ (Wisc), Telegraph, TelegraphCQ (Berkeley)
 - STREAM (Stanford), Autora, Borealis, Medusa (Brown/Brandeis/MIT)

- Commercial
 - Oracle*Streams, Strembase etc...
Goal: Handle millions of triggers

Triggers: Commonly used for integrity constraint checking, alerts etc.

create trigger IrisHouseAlert
on insert to house
from salesperson s, house h, represents r
when s.name = ‘Iris’ and s.spno=r.spno and
r.nno=h.nno
do raise event
NewHouseInIrisNeighborhood(h.hno, h.address)

Figure: Trigger Example (Hansen et al.)
Goal: Handle millions of triggers

Triggers: Commonly used for integrity constraint checking, alerts etc...

CREATE TABLE empauditlog (
audit_date DATE,
audit_user VARCHAR2(20),
audit_desc VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

Figure: Trigger Example (Hansen et al.)
Approach:

- Identify unique “expression signatures” (based on data sources and attributes involved)
- Group the triggers into “equivalence” classes based on their signatures
- Use efficient main memory data structures to quickly find triggers that match

Many similarities to AI Rule systems
2. The TriggerMan Command Language

Commands in TriggerMan have a keyword-delimited, SQL-like syntax. TriggerMan...

Data Source
Trigger

Update Queue
Table

Update Queue
in Shared Memory

TriggerMan DataBlade

Host DBMS: Informix with Universal Data Option

Data Source
App

...
with a node for each tuple variable, and an edge for each join predicate identified. The nodes contain a reference to... different triggers having same set of constants.

Figure: Triggerman (Hansen et al.)
Triggers

- Precursor to data streams work
- Event-driven as opposed to query driven
- Can handle pub-sub applications well

E.g. "moving average" query
Every new tuple will satisfy the query
Trigger action (compute moving avg) will be invoked per new tuple
No sharing of work from previous execution
No sharing of work between multiple triggers
E.g. If one person wants moving average over last hour, other person over last two hours
Triggers

- Precursor to data streams work
- Event-driven as opposed to query driven
- Can handle pub-sub applications well
- Can identify quickly queries that should be executed
- But, no discussion on how to execute those queries efficiently
 - E.g. “moving average” query
 - Every new tuple will satisfy the query
 - Trigger action (compute moving avg) will be invoked per new tuple
Triggers

- Precursor to data streams work
- Event-driven as opposed to query driven
- Can handle pub-sub applications well
- Can identify quickly queries that should be executed
- But, no discussion on how to execute those queries efficiently
 - E.g. “moving average” query
 - Every new tuple will satisfy the query
 - Trigger action (compute moving avg) will be invoked per new tuple
 - No sharing of work from previous execution
 - No sharing of work between multiple triggers
 - E.g. If one person wants moving average over last hour, other person over last two hours
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Data Streams: Some Major Concepts

- New non-blocking operators
 - Symmetric hash join, MJoin, XJoin, Eddy etc...
- Adaptivity
 - Dealing with unpredictability
- Sharing/Multi-query optimization
 - 1000’s of queries; must share execution
Data Streams: Some Major Concepts

- New non-blocking operators
 - Symmetric hash join, MJoin, XJoin, Eddy etc...
- Adaptivity
 - Dealing with unpredictability
- Sharing/Multi-query optimization
 - 1000’s of queries; must share execution
- Load shedding
 - Bursty data: Too much to handle at some times
- Declarative languages
 - Especially for pattern recognition, modeling etc
- Theoretical developments
 - “One-pass” algorithms
Query execution

- Duality between queries and data
 - Traditional: Apply queries to data
 - Streams: Apply data to queries

- New operators
 - Symmetric hash join, XJoins
 - MJoin

- Predicate indexes

- Push vs Pull Execution

- Execution using a router
 - E.g. using an *eddy*
Outline

1. Query Processing
 - Iterator Model

2. Data Warehouses

3. Column Stores vs Row Stores

4. Query Optimization

5. Adaptive Query Processing

6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies

7. Sketches
Three new operators...

- (Binary) Symmetric Hash Join
- n-Ary Symmetric Hash Join (mJoin)
- Eddy

Developed in parallel databases or streams contexts

- But useful in deterministic context as well

Key difference between streams and disk-based

- **Push vs Pull**
 - Iterators *pull* data (eventually from disk)
 - Streams *push* data into the query processor
 - Similarly, wide area data sources push data

Parallel query processing has a combination

- push (across processor) and pull (within a processor)
- Volcano paper (later)
Query Processing: Symmetric Hash Join

- Produces results immediately → Better *time to first tuple*
- Can implement as an iterator
 - Alternate pulling data from the two children
- Problems:
 - Larger memory requirement
 - Not as easy to extend to disk (XJoin)
For each relation: build a hash-table on each join attr.
For each new tuple:
 - *insert* it into appropriate hash table(s)
 - *probe* into hash-tables on other relations

Example Query

```
SELECT *
FROM R, S, T, U
WHERE R.a = S.a
    AND S.b = T.b
    AND S.c = U.c
```

Example Query

```
T
S
R U
S
R
T U
S
T
U R
S
U
R T
```
Example Query

```
SELECT *
FROM R, S, T, U
WHERE R.a = S.a
AND S.b = T.b
AND S.c = U.c
```

MJoin Operator

![MJoin Operator Diagram]

Examples of Probing Sequences

- S → T → R → U
- T → S → U → R
- R → S → T → U
- U → S → R → T

Fig. 3.2 Executing a 4-way join query using the MJoin operator. The triangles denote the in-memory hash indexes built on the relations.
Intermediate tuples are never stored anywhere

Need a policy for choosing the *probing sequences*

- Similarities to *selection ordering*
- *Rank ordering*: sort ascending by \(c/(1 - p) \)
 - where \(c \) = cost of probing, \(p \) = selectivity

Can change the probing sequence anytime w/o problems (*adaptivity*)

Many more details in [Survey on Adaptive QP](#)
Intermediate tuples are never stored anywhere

Need a policy for choosing the *probing sequences*

- Similarities to *selection ordering*
- *Rank ordering*: sort ascending by \(c/(1 - p) \)
 - where \(c = \) cost of probing, \(p = \) selectivity
- Can change the probing sequence anytime w/o problems (*adaptivity*)
- Many more details in Survey on Adaptive QP

Issues:

- Typically less efficient than a tree of binary joins

Iterator ?

- Can alternate pulling from different children
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Eddy/Tuple Router

- An operator that controls the tuple in-flow and out-flow for a collection of operators
 - Allows better control over scheduling and output
 - For interactive applications, for user feedback etc...
 - Enables adaptivity
 - Different tuples can be processed in different orders
 - Better suited for “reacting” to tuples

See details in "An initial study of overheads of routing", SIGMOD Record 2004
Eddy/Tuple Router

- An operator that controls the tuple in-flow and out-flow for a collection of operators
 - Allows better control over scheduling and output
 - For interactive applications, for user feedback etc...
 - Enables adaptivity
 - Different tuples can be processed in different orders
 - Better suited for “reacting” to tuples

- Can be implemented as an iterator
 - See details in

 “An initial study of overheads of routing”, SIGMOD Record 200
select count(*)
from R, S, T
where R.a = S.a and S.b = T.b
and pred(R.c)

Figure 2: Using traditional operators along with an eddy
Figure 3: Eddy instantiated for the example query
Example Query

```
SELECT *
FROM R, S, T, U
WHERE R.a = S.a 
AND S.b = T.b 
AND T.c = U.c 
AND σ_P(T)
```

Figure 3.1 Example of an eddy instantiated for a 4-way join query (taken from Avnur and Hellerstein [AH00]). A routing table can be used to record the valid routing destinations, and possibly current probabilities for choosing each destination, for different tuple signatures.

The eddy operator, which is used as the tuple router, monitors the execution, and makes the routing decisions for the tuples. Figure 3.1 shows how an eddy can be used to execute a 4-way join query. Along with an eddy, three join operators and one selection operator are instantiated. The eddy executes the query by routing tuples from the relations R, S, and T through these operators; a tuple that has been processed by all operators is sent to the output. The eddy can adapt to changing data or operator characteristics by simply changing the order in which the tuples are routed through these operators. Note that the operators themselves must be chosen in advance (this was somewhat relaxed by a latter approach called SteMs that we discuss in Chapter 5). These operator choices dictate, to a large degree, the plans among which the eddy can adapt. Pipelined operators like symmetric...
Eddy/Tuple Router: Mechanism vs Policy

- Tricky to reason about: Encapsulates too much logic
- Break into two pieces (discussion from AQP Survey)
Tricky to reason about: Encapsulates too much logic

Break into two pieces (discussion from AQP Survey)

Mechanism: Enables the adaptivity

- By allowing eddy choice at any point
- As long as the eddy obeys some rules, the execution will be **correct**
 - Not always easy... arbitrary routings can be nonsensical
- For any tuple, the mechanism tells the eddy the valid set of operators to route to
- Mechanism can be implemented efficiently (see SIGMOD Record paper)
Eddy/Tuple Router: Mechanism vs Policy

- Tricky to reason about: Encapsulates too much logic
- Break into two pieces (discussion from AQP Survey)

Mechanism: Enables the adaptivity
- By allowing eddy choice at any point
- As long as the eddy obeys some rules, the execution will be correct
 - Not always easy... arbitrary routings can be nonsensical
- For any tuple, the mechanism tells the eddy the valid set of operators to route to
- Mechanism can be implemented efficiently (see SIGMOD Record paper)

Policy: Exploit the adaptivity
- For each tuple, choose the operator to route too
- This can be as complex as you want
Eddy/Tuple Router: Steps

- Instatiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

We will revisit policy issues when discussing AQP
Eddy/Tuple Router: Steps

- Instantiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

- At each instance:
 - Choose next tuple to process
 - Either a new source tuple or an intermediate tuple produced by an operator
 - Decide which operator to route to (using the policy)
 - Add result tuples from the operator (if any) to a queue
 - If a result tuple is fully processed, send to output
Eddy/Tuple Router: Steps

- Instantiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

- At each instance:
 - Choose next tuple to process
 - Either a new source tuple or an intermediate tuple produced by an operator
 - Decide which operator to route to (using the policy)
 - Add result tuples from the operator (if any) to a queue
 - If a result tuple is fully processed, send to output

- We will revisit policy issues when discussing AQP
Stream Systems

- **NiagaraCQ (Wisconsin)**
 - Early work on data streams

- **TelegraphCQ (Berkeley)**
 - Based on eddies; implemented in PostgreSQL
 - Focus on adaptivity and sharing issues
 - Declarative querying interface: SQL-type

- **Aurora (Brown/Brandeis/MIT)**
 - Boxes-and-arrows paradigm for setting up dataflows
 - Much focus on Quality of Service

- **STREAM (Stanford)**
 - Addressed many issues including optimization, language design, approximate query answering, memory constraints etc. . .

- Much other work..
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
One-pass algorithms: You can only look at each data item once

Goal: Compute some aggregate of interest

Question: What is the amount of space needed if the data size is N?

- For exact or *approximate* computation
One-pass algorithms: You can only look at each data item once

Goal: Compute some aggregate of interest

Question: What is the amount of space needed if the data size is N?

- For exact or approximate computation

Examples:

1. Average: $O(1)$ (number of entries, total sum)
2. Median:
 - Exact: Space complexity = N
 - Approximate: $O\left(\frac{1}{\epsilon} \log^2 \epsilon N\right)$, with ϵ error
Flajolet-Martin Sketch: Count distinct number of values in a sequence in *one pass* with minimum memory

- $N =$ Length of the sequence
- $n =$ Number of distinct values

Naive Approach:
- Keep a list of all distinct values, and update incrementally
 - $O(n)$

FM-Sketches: Approximate counting in $O(\log(n))$ space
Algorithm:

- Use a bitmap, \(B \), of size \(k \), where \(k \) is \(\approx \theta(\log_2(n)) \)

- Aren’t we trying to estimate \(n \)?

- Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
Algorithm:

- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
- Need a uniform hash function: $h(x)$ maps values in the sequence to $\{0, \cdots, 2^k - 1\}$.
- For each value, v in the sequence, find $h(v)$.

Let $l(h(v))$ denote the least-significant 1 bit in $h(v)$.

$k = 6$, $h(v) = 000100$, then $l(v) = 3$.

$k = 6$, $h(v) = 000101$, then $l(v) = 1$.
Algorithm:

- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.

- Need a uniform hash function: $h(x)$ maps values in the sequence to $\{0, \cdots, 2^k - 1\}$.
- For each value v in the sequence, find $h(v)$.
- Let $l(h(v))$ denote the least-significant 1 bit in $h(v)$.
 - $k = 6$, $h(v) = 000100$, then $l(v) = 3$.
 - $k = 6$, $h(v) = 000101$, then $l(v) = 1$.
Algorithm:

- Use a bitmap, \(B \), of size \(k \), where \(k \) is \(\approx \theta(\log_2(n)) \)
 - Aren’t we trying to estimate \(n \)?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.

- Need a uniform hash function: \(h(x) \) maps values in the sequence to \(\{0, \cdots, 2^k - 1\} \).

- For each value, \(v \) in the sequence, find \(h(v) \).

- Let \(l(h(v)) \) denote the least-significant 1 bit in \(h(v) \).

 - \(k = 6, h(v) = 000100 \), then \(l(v) = 3 \).
 - \(k = 6, h(v) = 000101 \), then \(l(v) = 1 \).

- Set \(B(l(v)) = 1 \).

- Note: Duplicate values will just set the same bit again: “duplicate-insensitive”
Algorithm (Cntd):

- At the end, let c be the least-significant (right-most) 0 in B
- 1.2928×2^c is an estimator for the number of distinct values
Algorithm (Cntd):
- At the end, let c be the least-significant (right-most) 0 in B
- 1.2928×2^c is an estimator for the number of distinct values
- Why?
 - Choose a number, x, uniformly between 0 to $2^k - 1$.
 - $\text{Prob}(l(x) = c) = 1/2^{c+1}$
 - Hash function is assumed to map values in the sequence uniformly onto the above range as well
Algorithm (Cntd):

At the end, let c be the least-significant (right-most) 0 in B

1.2928×2^c is an estimator for the number of distinct values

Why?

- Choose a number, x, uniformly between 0 to $2^k - 1$.
- $\text{Prob}(l(x) = c) = 1/2^{c+1}$
- Hash function is assumed to map values in the sequence uniformly onto the above range as well

Use multiple hash functions for more confidence

Space: $O(\log(n))$

Choosing hash functions?

- Tricky: uniform hash functions take a lot of space
- Much work on relaxing the requirement
Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let m_i be the frequency of i in the stream

- $m_1 = 3$, $m_2 = m_3 = 2$, $m_4 = m_5 = 1$.

Frequency moment $F_k = \sum_{i=1}^{n} m_i^k$
Alon, Matias, Szegedy: Space Complexity of Approximating the Frequency Moments; STOC 1996

Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let \(m_i \) be the frequency of \(i \) in the stream

\[
m_1 = 3, \ m_2 = m_3 = 2, \ m_4 = m_5 = 1.
\]

Frequency moment \(F_k = \sum_{i=1}^{n} m_i^k \)

\[
F_0 = 5 = \text{number of distinct elements in the stream}
\]

\[
F_1 = 9 = \text{total number of elements in the stream}
\]

\[
F_2 = 19 = \text{comes in up many places (e.g. self-join size of a relation)}
\]
AMS Sketches

- Alon, Matias, Szegedy: Space Complexity of Approximating the Frequency Moments; STOC 1996

Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let m_i be the frequency of i in the stream

$m_1 = 3$, $m_2 = m_3 = 2$, $m_4 = m_5 = 1$.

Frequency moment $F_k = \sum_{i=1}^{n} m_i^k$

$F_0 = 5 =$ number of distinct elements in the stream
$F_1 = 9 =$ total number of elements in the stream
$F_2 = 19 =$ comes in up many places (e.g. self-join size of a relation)

How to compute?

- Exact computation: $O(n)$, where n is the number of distinct elements, not the size of stream
- Approximate: AMS Result: Can approximate F_0, F_1, F_2 in logarithmic space, requires $O(n^{\Omega(1)})$ space for others