Condor: a system for high throughput computing

- Resource finder
- Batch queue manager
- Scheduler
- Checkpoint/Restart
- Process migration
- Remote system calls

Condor-G: a computation management agent for Grid Computing

Condor System Structure

- Negotiator
- Central Manager (MatchMaker)
- Collector
- Submit Machine
- Execution Machine
- Customer Agent
- Resource Agent

D. Thain, T. Tannenbaum, M. Livny

Presented by
Govind Kothari
Condor - Kernel

- User
- Problem solver (DAGMan) (Master-Worker)
- Agent (schedd)
- Resource (starter)
- Matchmaker (central manager)
- Shadow (shadow)
- Sandbox (starter)
- Job

Major processes in a Condor System

Resource Agent

- Monitors system status
 - Load average
 - Keyboard and mouse idle time
 - Memory, disk space, ...
- Advertises status
- Listens for requests to run jobs

Central Manager

- Collector
 - Accepts ads from resource agents and customer agents
- Negotiator
 - Matches customers with resources
- Accountant
 - Records resource usage by customers

Customer Agent

- Maintains queue of submitted jobs
- Advertises status
- Selects jobs to run
Condor-Kernel

- User submits job to Agent
- Agent is responsible for finding resource for user
- Agents and resources advertise themselves to a matchmaker
- Matchmaker is responsible for finding compatible agents and resources
- Agent starts a shadow process and resource, a sandbox
- Shadow is responsible for details to execute the job
- Sandbox is responsible for creating a safe execution environment

Sharing across organizations

- Gateway flocking
- Direct flocking

Gateway flocking

- Gateway pass the information (detects idle agents or resources) about participants between the pools
- Advantage
 - Completely transparent to the User
- Disadvantage
 - Since each pool is represented by single gateway, the accounting of use by individual remote users is impossible
 - Does not permit individual user to join multiple communities
Direct flocking

- An agent may simply report to multiple matchmakers
- Advantage
 - Requires only agreement between one individual and another organization
- Disadvantage
 - Only helps users who take initiative

Planning and Scheduling

- Planning: Acquisition of resources by users
 - Response time, turnaround time, throughput of job
- Scheduling: Management of resource by its owner
 - Efficiency, utilization and throughput
- Condor uses matchmaking to bridge the gap between planning and scheduling

Matchmaking
Sample class adds for Condor

<table>
<thead>
<tr>
<th>Job ClassAd</th>
<th>Machine ClassAd</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyType = "Job"</td>
<td>MyType = "Machine"</td>
</tr>
<tr>
<td>TargetType = "Machine"</td>
<td>TargetType = "Job"</td>
</tr>
<tr>
<td>Requirements = (other Arch= "INTEL" & other OpSys= "LINUX") & other Disk > my.DiskUsage</td>
<td>Machine = "nostoa.cs.wisc.edu"</td>
</tr>
<tr>
<td>Rank = (Memory * 10000) + KFlops</td>
<td>Requirements = (LoadAvg <= 0.30000) & (KeyboardIdle > (15 * 60))</td>
</tr>
<tr>
<td>Cmd = "/home/tannenba/bin/sim.exe"</td>
<td>Rank = other.Department = self.Department</td>
</tr>
<tr>
<td>Department = "CompSci"</td>
<td>Arch = "INTEL"</td>
</tr>
<tr>
<td>Owner = "tannenba"</td>
<td>OpSys = "LINUX"</td>
</tr>
<tr>
<td>DiskUsage = 6000</td>
<td>Disk = 9076076</td>
</tr>
</tbody>
</table>

Two sample ClassAds from Condor

Matchmaking - features

- ClassAds require no fixed schema
- Different algorithms
 - Gang matching
 - permits the co-allocation of more than one resource, such as a license and a machine
 - Collections
 - provide persistent storage for large numbers of ClassAds with database features such as transactions and indexing.
 - Set matching
 - permits the selection and claiming of large numbers of resource using a very compact expression representation
 - Indirect references
 - permit one ClassAd to refer to another and facilitate the construction of the I/O communities

Problem Solvers

- It's a high level structure built on top of the Condor Agent
- Problem solver need only concerned with application specific details of ordering and task selection
- Two types provided with Condor
 - Master-Worker (MW)
 - Directed Acyclic Graph Manager (DAGMan)
- Each provide unique programming model for managing large number of jobs

Master-worker

- Suitable for problems with indeterminate size on large and unreliable workforce
- Three components
 - Work list
 - Record of all outstanding work
 - Tracking module
 - Accounts of remote worker processes and assigns them uncompleted work
 - Steering module
 - Directs computation by examining results, modifying the worklist and communicating with Condor to obtain sufficient number of worker processes
Structure of Master-Worker Program

Directed Acyclic Graph Manager (DAGMan)
- Service for executing multiple jobs with dependencies in a declarative form

Split Execution
- Once a job is allocated a particular resource, lot of problems can arise
 - Absence of required files
 - Firewall issues
 - Credentials to access the data
- Only the *execution machine* knows what file systems, networks, and databases may be accessed and how they must be reached
- Only the *submission machine* knows at run time what precise resources the job must actually be directed to.
- Co operation is required – it is called *split execution*

Split Execution
- Split Execution is accomplished by two distinct components: *shadow* and *sandbox*
- *Shadow*: represents user to the system
- Sandbox: creates right environment for the job
 - Two components
 - Sand: provide whatever is needed by the job
 - Box: protect the resource from any harm that a malicious job might cause
- *Universe*: It is defined by matched sandbox and shadow
Universe

- Different types of Universe provided by Condor
 - Standard Universe
 - Java Universe

Standard Universe

Java Universe

Conclusion

- Condor has been successfully used for solving real world problems
- Examples
 - Micron Technology Inc
 - C.O.R.E. Digital pictures
Thank You