Grid and P2P: compare and contrast

Awalin Shopan

- Same general problem: the organization of large set of resource sharing within virtual communities.
- Same general approach to solution: the creation of overlay structures that coexist underlying organizational structures.
- “Grid computing addresses infrastructure but not yet failure, whereas P2P addresses failure but not yet infrastructure”.

Target communities

GRID:
- professional communities needing to access remote resources.
- Trust, accountability, and opportunities for sanctions in response to inappropriate behavior

P2P:
- grass-roots, mass-culture file-sharing.
- Diverse and anonymous individuals with little incentive to act cooperatively.

Resources

Grid:
- powerful, more diverse, and better connected
- cluster, storage system, database, or scientific instruments
- administered in an organized fashion according to some well-defined policy
- availability tends to be higher and more uniform

P2P:
- intermittent participation
- highly variable behavior
Application

- Grid: more integration, data intensive, numeric simulation, optimization problems

- P2P: specialized resource-sharing problems

Goal: convergence of Grid and P2P into one
- Grid lacks supports for intermittent resource participation
- P2P lacks attribute-based search

Concerns for Grid systems:
- Scalability
- Independence from global control

P2P approach to Resource Location in Grid

Architectural Components of the Proposed Solution Space

- Membership Protocol
- Preprocessing
- Overlay Construction
- Query Processing
Emulated Grid

- Extensible
- Nodes forming an overlay network
- Node=process
- Communication via TCP
- Information at each node:
 - Resource: info about a set of resources
 - Membership: about other nodes in the overlay network

Environment variables

1. Resource information distribution & density
2. Resource information dynamism
3. Request popularity distributions
4. Peer participation

Implemented:
- Resource information distribution
- Request popularity distributions

Assumption:
- Static resource attribute (ignoring 2)
- Constant peer participation (ignoring 4)
- No failures

Experimental Setup

Resource distributions
- Balanced
- geometric

Request distributions
- One week’s requests for computers in CONDOR
- Synthetic request with uniform distribution

Components Setup

- Membership protocol: P2P like join
- Overlay function: unlimited neighbors
- Preprocessing: N/A
- Request processing: based on forwarding
 - Random walk
 - Learning based
 - Best neighbor
 - Learning-based + best neighbors

Unstructured, static network in the absence of preprocessing
Result

• Cost={response time, storage}
• Learning based consistently performs well
• Learning based + best neighbors: unpredictable, expensive
• Random walk: lowest cost, least efficient

• Best neighbor strategy performs better in uniform user distribution load, rather than unbalanced.
• In case of variable usage pattern: best strategy is to use Learning based forwarding.

Thank You