CMSC 132: OBJECT-ORIENTED PROGRAMMING II

Graphs & Graph Traversal

Department of Computer Science
University of Maryland, College Park
Graph Data Structures

- Many-to-many relationship between elements
 - Each element has multiple predecessors
 - Each element has multiple successors
Graph Definitions

- **Node**
 - Element of graph
 - State
 - List of adjacent/neighbor/successor nodes

- **Edge**
 - Connection between two nodes
 - State
 - Endpoints of edge
Graph Definitions

- Directed graph
 - Directed edges
- Undirected graph
 - Undirected edges
Graph Definitions

- Weighted graph
 - Weight (cost) associated with each edge
Graph Definitions

• Path
 • Sequence of nodes \(n_1, n_2, \ldots, n_k \)
 • Edge exists between each pair of nodes \(n_i, n_{i+1} \)
 • Example
 • \(A, B, C \) is a path
 • \(A, E, D \) is not a path
Graph Definitions

- **Cycle**
 - Path that ends back at starting node
 - Example
 - A, E, A
 - A, B, C, D, E, A

- **Simple path**
 - No cycles in path

- **Acyclic graph**
 - No cycles in graph
Graph Definitions

• Connected Graph
 • Every node in the graph is reachable from every other node in the graph

• Unconnected graph
 • Graph that has several disjoint components
Graph Operations

- Traversal (search)
 - Visit each node in graph exactly once
 - Usually perform computation at each node
- Two approaches
 - Breadth first search (BFS)
 - Depth first search (DFS)
Breadth-first Search (BFS)

- **Approach**
 - Visit all neighbors of node first
 - View as series of expanding circles
 - Keep list of nodes to visit in queue

- **Example traversal**
 1. n
 2. a, c, b
 3. e, g, h, i, j
 4. d, f
Breadth-first Tree Traversal

- Example traversals starting from 1

Left to right

Right to left

Random
Traversals Orders

• Order of successors
 • For tree
 • Can order children nodes from left to right
 • For graph
 • Left to right doesn’t make much sense
 • Each node just has a set of successors and predecessors; there is no order among edges

• For breadth first search
 • Visit all nodes at distance k from starting point
 • Before visiting any nodes at (minimum) distance k+1 from starting point
Depth-first Search (DFS)

• **Approach**
 - Visit all nodes on path first
 - **Backtrack** when path ends
 - Keep list of nodes to visit in a stack

• **Example traversal**
 1. N
 2. A
 3. B, C, D, ...
 4. F...
Depth-first Tree Traversal

- Example traversals from 1 (preorder)

Left to right:

```
   1
  /   \
 2     6
 /     /\n3  5    7
```

Right to left:

```
   1
  /   \
 2     6
 /     /\n4   5   3
```

Random:

```
   1
  /   \
 2     6
 /     /\n4   3   7
```

Traversal Algorithms

- Issue
 - How to avoid revisiting nodes
 - Infinite loop if cycles present

- Approaches
 - Record set of visited nodes
 - Mark nodes as visited
Traversals – Avoid Revisiting Nodes

- Record set of visited nodes
 - Initialize \{ Visited \} to empty set
 - Add to \{ Visited \} as nodes is visited
 - Skip nodes already in \{ Visited \}

\[V = \emptyset \]

\[V = \{ 1 \} \]

\[V = \{ 1, 2 \} \]
Traversals – Avoid Revisiting Nodes

• Mark nodes as visited
 • Initialize tag on all nodes (to False)
 • Set tag (to True) as node is visited
 • Skip nodes with tag = True
Traversal Algorithm Using Sets

\{ \text{Visited} \} = \emptyset
\{ \text{Discovered} \} = \{ \text{1st node} \}

while (\{ \text{Discovered} \} \neq \emptyset)

\hspace{1em} \text{take node } X \text{ out of } \{ \text{Discovered} \}

\hspace{1em} \text{if } X \text{ not in } \{ \text{Visited} \}

\hspace{2em} \text{add } X \text{ to } \{ \text{Visited} \}

\hspace{2em} \text{for each successor } Y \text{ of } X

\hspace{3em} \text{if } (Y \text{ is not in } \{ \text{Visited} \})

\hspace{4em} \text{add } Y \text{ to } \{ \text{Discovered} \}
Traversal Algorithm Using Tags

for all nodes X
 set X.tag = False
{ Discovered } = { 1st node }
while ({ Discovered } ≠ ∅)
 take node X out of { Discovered }
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 add Y to { Discovered }
BFS vs. DFS Traversal

- Order nodes taken out of `{ Discovered }` key
- Implement `{ Discovered }` as Queue
 - First in, first out
 - Traverse nodes breadth first
- Implement `{ Discovered }` as Stack
 - First in, last out
 - Traverse nodes depth first
BFS Traversal Algorithm

for all nodes X
 X.tag = False
put 1st node in Queue
while (Queue not empty)
 take node X out of Queue
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 put Y in Queue
DFS Traversal Algorithm

for all nodes X
 X.tag = False

put 1st node in Stack

while (Stack not empty)
 pop X off Stack
 if (X.tag = False)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 push Y onto Stack
Example

- Let’s do a BFS/DFS using the following graph (start vertex A)
Recursive Graph Traversal

- Can traverse graph using recursive algorithm
 - Recursively visit successors

- Approach

 Visit (X)

 for each successor Y of X

 Visit (Y)

- Implicit call stack & backtracking
 - Results in depth-first traversal
Recursive DFS Algorithm

Traverse()
 for all nodes X
 set X.tag = False
 Visit (1st node)

Visit (X)
 set X.tag = True
 for each successor Y of X
 if (Y.tag = False)
 Visit (Y)