Advanced Concurrency

Department of Computer Science
University of Maryland, College Park
Excellent Reference on Concurrency

- Reference: “Java Concurrency in Practice” by Brian Goetz
Concurrency without Explicitly Threads

- You can write concurrent applications that don’t use explicit threads or synchronization
- Use built-in abstractions that support coordination and parallel execution
Synchronized Collections

- Achieve thread safety by allowing access to only one thread at a time
- Examples
 - Vector
 - Hashtable
 - Synchronized wrapper classes created by `Collections.synchronizedXxx`
- Example: synchronized set
- http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html#synchronizedSet(java.util.Set)
- Disadvantage of this approach: poor concurrency
Concurrent Collections

- Designed to allow concurrent access by multiple threads
 - Blocking only when they “conflict”
- Higher space overhead
 - Not much time overhead
- Many of the concurrent collections do not allow null keys or values
- Examples
 - `ConcurrentHashMap`
 - Replacement for synchronized hash-based Map implementations
 - `CopyOnWriteArrayList`
 - Replacement for synchronized List implementations (where traversal is the predominant operation)
Concurrent HashMap

• Allows simultaneous reads, and by default up to 16 simultaneous writers
 • Can increase the number of simultaneous writers

• Special Methods
 • V putIfAbsent(K key, V value)
 • Store the value only if the key has no mapping
 • Return old value (null if none)
 • boolean remove(K key, V oldValue)
 • Remove mapping only if it has the specified value
 • boolean replace(K key, V oldValue, V newValue)
 • Update the mapping only if it has the specified value
CopyOnWriteArrayList

- Suitable only if updates rare and iteration occurs often
- Iteration uses a snapshot of the array
- Iterators keep a reference to the backing array current at the beginning of the iteration
- When an update occurs a new array copy is created and published
- Important use case
 - Keeping track of listeners to an Observable
 - While iterating through list of listeners (delivering a notification), one of them might ask to be unsubscribed
Concurrent Skip Lists

• Skip Lists are a probabilistic alternative to balanced trees
 • Stores sorted list of items using layers of linked lists
• Invented in 1988 by Prof. Bill Pugh

Examples

• ConcurrentSkipListMap
 • http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListMap.html

• ConcurrentSkipListSet
 • http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/ConcurrentSkipListSet.html

• Above classes are concurrent replacements for a synchronized SortedMap or SortedSet (e.g., TreeMap, TreeSet wrapped with synchronizedMap)
Waiting for Something to Happen

• We briefly talk about join (waits for another thread to terminate)

• There are lots of ways to have a thread wait until things are right for it to do something
 • wait/notify were the way to do this before Java 5
 • But now we have new ways that are often better: blocking queues and synchronizers
Blocking Queues

- **BlockingQueue**
 - http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html
 - BlockingQueue implementations are thread-safe
 - BlockingQueue implementations designed for used in producer-consumer queues
- BlockingQueue methods can handle in different ways operations that cannot be satisfied immediately. The options are
 - Throwing an exception
 - Returning a special value (null or false)
 - Blocking the thread until the operation can succeed
 - E.g., waiting for space to become available
 - Blocking the thread for a given period of time before giving up

<table>
<thead>
<tr>
<th></th>
<th>throws exception</th>
<th>returns special value</th>
<th>blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>add(e)</td>
<td>offer(e)</td>
<td>put(e)</td>
</tr>
<tr>
<td>remove</td>
<td>remove()</td>
<td>poll()</td>
<td>take()</td>
</tr>
<tr>
<td>examine</td>
<td>element</td>
<td>peek()</td>
<td></td>
</tr>
</tbody>
</table>
Synchronizers

- **Synchronizer**
 - Any object that coordinates control flow of threads
 - They allow threads arriving at synchronizer to pass or to wait

- **Examples**
 - Semaphores
 - Latches
 - Barriers
 - Blocking queues can act as synchronizers
Semaphore

- Controls number of activities accessing a resource or performing an action
- Contains a count of the number of permits available
- You can acquire or release permits
- acquire method - blocks if not enough permits are available
- release method – returns permit to the semaphore
CountDownLatch

- Act as a gate that is open once a set of events have taken place
- Has a counter that can be decremented (never incremented)
- countDown method - decrements counter indicating event has taken place
- await method – wait for the counter to reach zero
 - Blocks until counter reaches zero
Barrier

• Allows set of threads to wait for each other to reach a common point

• await method – blocks until all threads have reached the barrier

• Example: CyclicBarrier

 • http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/CyclicBarrier.html
Fairness

• Consider a Blocking queue where you atomically remove multiple elements

• What happens if one person wants to atomically remove 10 elements from a queue that can contain up to 20 elements
 • But there is a constant stream of other threads that want to remove smaller number of elements?

Starvation!
Some Abstractions Have Fair Variants

• For example, fair semaphores and fair reentrant locks
• Generally, fair guarantees first-come, first-served
• But fair almost always reduces throughput
 • Over and above implementation cost
 • Letting running threads run improves throughput
Atomic Classes

- java.util.concurrent.atomic
 - Toolkit of classes that support lock-free thread-safe programming on single variables
- AtomicInteger class
 - Encapsulates an integer
 - Supports atomic operations:
 - int getAndIncrement()
 - int decrementAndGet()
 - boolean compareAndSet(int expect, int update)
- There is an AtomicX class for every primitive type
- The atomic operations are very efficient
 - Most processors provide some kind of atomic compare and swap instruction
Executor

• An object that executes submitted Runnable tasks, rather than starting a thread for each task (e.g., new Thread(new(RunnableTask())).start())

• You ask an executor to do it
 Executor executor = create executor;
 executor.execute(new RunnableTask1());
 executor.execute(new RunnableTask2());

• An executor can be simple or complex
 • The execute method might just run the task
 • Or create and start thread
 • Or do something more complicated

• java.util.concurrent.Executors
 • Provides many factory and utility methods for executors
 • newFixedThreadPool(int nThreads)
 • newCachedThreadPool()
 • Creates threads as needed, reuses them
Why Thread Pools?

• Some overhead to starting a thread
• Running 100,000 threads is a bad idea
 • Unless you have a monster machine