Algorithm Efficiency

- Efficiency
 - Amount of resources used by algorithm
 - Time, space
- Measuring efficiency
 - Benchmarking
 - Approach
 - Pick some desired inputs
 - Actually run implementation of algorithm
 - Measure time & space needed
 - Asymptotic analysis
Benchmarking

- **Advantages**
 - Precise information for given configuration
 - Implementation, hardware, inputs

- **Disadvantages**
 - Affected by configuration
 - Data sets (often too small)
 - Dataset that was the right size 3 years ago is likely too small now
 - Hardware
 - Software
 - Affected by special cases (biased inputs)
 - Does not measure **intrinsic** efficiency
Asymptotic Analysis

• Approach
 • Mathematically analyze efficiency
 • Calculate time as function of input size \(n \)
 • \(T \approx O(f(n)) \)
 • \(T \) is on the order of \(f(n) \)
 • “Big O” notation

• Advantages
 • Measures intrinsic efficiency
 • Dominates efficiency for large input sizes
 • Programming language, compiler, processor irrelevant
Search Example

• Number guessing game
 • Pick a number between 1…n
 • Guess a number
 • Answer “correct”, “too high”, “too low”
 • Repeat guesses until correct number guessed
Linear Search Algorithm

- **Algorithm**
 - Guess number = 1
 - If incorrect, increment guess by 1
 - Repeat until correct

- **Example**
 - Given number between 1…100
 - Pick 20
 - Guess sequence = 1, 2, 3, 4 … 20
 - Required 20 guesses
Linear Search Algorithm

• Analysis of # of guesses needed for 1…n
 • If number = 1, requires 1 guess
 • If number = n, requires n guesses
 • On average, needs n/2 guesses
• Time = O(n) = Linear time
Binary Search Algorithm

- Algorithm
 - Set low and high to be lowest and highest possible value
 - Guess middle = (low+high)/2
 - If too large, set high = middle-1
 - If too small, set low = middle+1
 - Repeat until guess correct
Binary Search Algorithm

• Example
 • Given number between 1…100
 • Secret number we are trying to find is 20
 • Guesses
 • low = 1, high = 100, guess 50, Answer = too large
 • low = 1, high = 49, guess 25, Answer = too large
 • low = 1, high = 24, guess 12, Answer = too small
 • low = 13, high = 24, guess 18, Answer = too small
 • low = 19, high = 24, guess 21, Answer = too large
 • low = 19, high = 20, guess 19, Answer = too small
 • low = 20, high = 20, guess 20, Answer = correct
 • Required 7 guesses
Binary Search Algorithm

- Analysis of # of guesses needed for 1…n
 - If number = n/2, requires 1 guess
 - If number = 1, requires $\log_2(n)$ guesses
 - If number = n, requires $\log_2(n)$ guesses
 - On average, needs $\log_2(n)$ guesses
 - Time = $O(\log_2(n)) = O(\log(n)) = \text{Log time}$
Search Comparison

- For number between 1…100
 - Simple algorithm = 50 steps
 - Binary search algorithm = \(\log_2(n) = 7 \) steps
- For number between 1…100,000
 - Simple algorithm = 50,000 steps
 - Binary search algorithm = \(\log_2(n) \) (about 17 steps)
- Binary search is much more efficient!
Asymptotic Complexity

- Comparing two linear functions

<table>
<thead>
<tr>
<th>Size</th>
<th>n/2</th>
<th>4n+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>32</td>
<td>259</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
<td>515</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
<td>1027</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
<td>2051</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • $n/2$ and $4n+3$ behave similarly
 • Run time roughly doubles as input size doubles
 • Run time increases \textit{linearly} with input size

• For large values of n
 • $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches exactly 2

• Both are $O(n)$ programs
Asymptotic Complexity

- Comparing two log functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\log_2(n)$</td>
<td>$5 \times \log_2(n) + 3$</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>7</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>9</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • \(\log_2(n) \) and \(5 \times \log_2(n) + 3 \) behave similarly
 • Run time roughly increases by constant as input size doubles
 • Run time increases \textit{logarithmically} with input size

• For large values of \(n \)
 • \(\text{Time}(2n) - \text{Time}(n) \) approaches constant
 • Base of logarithm does not matter
 • Simply a multiplicative factor
 \(\log_a N = \frac{\log_b N}{\log_b a} \)
 • Both are \(O(\log(n)) \) programs
Asymptotic Complexity

- Comparing two quadratic functions

<table>
<thead>
<tr>
<th>Size</th>
<th>Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n^2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>256</td>
</tr>
</tbody>
</table>
Asymptotic Complexity

• Comparing two functions
 • n^2 and $2n^2 + 8$ behave similarly
 • Run time roughly increases by 4 as input size doubles
 • Run time increases quadratically with input size
• For large values of n
 • $\frac{\text{Time}(2n)}{\text{Time}(n)}$ approaches 4
• Both are $O(n^2)$ programs
Big-O Notation

- Represents
 - Upper bound on number of steps in algorithm
 - For sufficiently large input size
 - Intrinsic efficiency of algorithm for large inputs
Formal Definition of Big-O

• Function $f(n)$ is $O(g(n))$ if
 • For some positive constants M, N_0
 • $M \times g(n) \geq f(n)$, for all $n \geq N_0$
• Intuitively
 • For some coefficient M & all data sizes $\geq N_0$
 • $M \times g(n)$ is always greater than $f(n)$
Big-O Examples

• 5n + 1000 \Rightarrow O(n)
 • Select M = 6, N_0 = 1000
 • For n \geq 1000
 • 6n \geq 5n+1000 is always true
 • Example \Rightarrow for n = 1000
 • 6000 \geq 5000 +1000
Big-O Examples

- $2n^2 + 10n + 1000 \Rightarrow O(n^2)$
 - Select $M = 4$, $N_0 = 100$
 - For $n \geq 100$
 - $4n^2 \geq 2n^2 + 10n + 1000$ is always true
 - Example \Rightarrow for $n = 100$
 - $40000 \geq 20000 + 1000 + 1000$
Observations

• For large values of n
 • Any $O(\log(n))$ algorithm is faster than $O(n)$
 • Any $O(n)$ algorithm is faster than $O(n^2)$
• Asymptotic complexity is fundamental measure of efficiency
Asymptotic Complexity Categories

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>Constant</td>
<td>Array access</td>
</tr>
<tr>
<td>$O(\log(n))$</td>
<td>Logarithmic</td>
<td>Binary search</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>Linear</td>
<td>Largest element</td>
</tr>
<tr>
<td>$O(n \log(n))$</td>
<td>N log N</td>
<td>Optimal sort</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>Quadratic</td>
<td>2D Matrix addition</td>
</tr>
<tr>
<td>$O(n^3)$</td>
<td>Cubic</td>
<td>2D Matrix multiply</td>
</tr>
<tr>
<td>$O(n^k)$</td>
<td>Polynomial</td>
<td>Linear programming</td>
</tr>
<tr>
<td>$O(k^n)$</td>
<td>Exponential</td>
<td>Integer programming</td>
</tr>
<tr>
<td>$O(n!)$</td>
<td>Factorial</td>
<td>Brute-force search TSP</td>
</tr>
<tr>
<td>$O(n^n)$</td>
<td>N to the N</td>
<td></td>
</tr>
</tbody>
</table>

From smallest to largest, for size n, constant $k > 1$
Complexity Category Example

<table>
<thead>
<tr>
<th>Problem Size</th>
<th># of Solution Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>3</td>
<td>n^2</td>
</tr>
<tr>
<td>4</td>
<td>$n\log(n)$</td>
</tr>
<tr>
<td>5</td>
<td>n</td>
</tr>
<tr>
<td>6</td>
<td>$\log(n)$</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Graph:
- 2^n (purples stars)
- n^2 (blues x)
- $n\log(n)$ (red triangles)
- n (pink squares)
- $\log(n)$ (black diamonds)

Axes:
- Y-axis: # of Solution Steps
- X-axis: Problem Size
Complexity Category Example

![Graph showing complexity categories](image-url)
Calculating Asymptotic Complexity

• As n increases
 • Highest complexity term dominates
 • Can ignore lower complexity terms

• Examples
 • $2n + 100 \Rightarrow O(n)$
 • $10n + n\log(n) \Rightarrow O(n\log(n))$
 • $100n + \frac{1}{2}n^2 \Rightarrow O(n^2)$
 • $100n^2 + n^3 \Rightarrow O(n^3)$
 • $\frac{1}{100}2^n + 100n^4 \Rightarrow O(2^n)$
Complexity Examples

- $2n + 100 \implies O(n)$
Complexity Examples

- $\frac{1}{2} n \log(n) + 10 n \Rightarrow O(n\log(n))$
Complexity Examples

- \(\frac{1}{2} n^2 + 100 \, n \Rightarrow O(n^2) \)
Complexity Examples

- $1/100 \ 2^n + 100 \ n^4 \Rightarrow O(2^n)$
Types of Case Analysis

- Can analyze different types (cases) of algorithm behavior
- Types of analysis
 - Best case
 - Worst case
 - Average case
 - Amortized
Types of Case Analysis (Best/Worst)

Best case
- Smallest number of steps required
- Not very useful
- Example: Find item in first place checked

Worst case
- Largest number of steps required
- Useful for upper bound on worst performance
 - Real-time applications (e.g., multimedia)
 - Quality of service guarantee
- Example: Find item in last place checked
Quicksort Example

- **Quicksort**
 - One of the fastest comparison sorts
 - Frequently used in practice
- **Quicksort algorithm**
 - Pick *pivot* value from list
 - Partition list into values smaller & bigger than pivot
 - Recursively sort both lists
- **Quicksort properties**
 - Average case = $O(n\log(n))$
 - Worst case = $O(n^2)$
 - Pivot \approx smallest / largest value in list
 - Picking from front of nearly sorted list
- **Can avoid worst-case behavior**
 - Select random pivot value
Types of Case Analysis (Average)

- **Average case analysis**
 - Number of steps required for “typical” case
 - Most useful metric in practice
 - Different approaches: average case, expected case

- **Average case**
 - Average over all possible inputs
 - Assumes all inputs have the same probability
 - Example
 - Case 1 = 10 steps, Case 2 = 20 steps
 - Average = 15 steps

- **Expected case**
 - Weighted average over all possible inputs
 - Based on probability of each input
 - Example
 - Case 1 (90%) = 10 steps, Case 2 (10%) = 20 steps
 - Average = 11 steps
Amortized Analysis

- **Approach**
 - Applies to worst-case sequences of operations
 - Finds average running time per operation
- **Example**
 - Normal case = 10 steps
 - Every 10th case may require 20 steps
 - Amortized time = 11 steps
- **Assumptions**
 - Can predict possible sequence of operations
 - Know when worst-case operations are needed
 - Does not require knowledge of probability
 - By using amortized analysis we can show the best way to grow an array is by doubling its size (rather than increasing by adding one entry at a time)