CMSC 132:
OBJECT-ORIENTED PROGRAMMING II

Algorithmic Complexity II

Department of Computer Science
University of Maryland, College Park
Analyzing Algorithms

• Goal
 • Find asymptotic complexity of algorithm

• Approach
 • Ignore less frequently executed parts of algorithm
 • Find critical section of algorithm
 • Determine how many times critical section is executed as function of problem size
Critical Section of Algorithm

• Heart of algorithm
• Dominates overall execution time
• Characteristics
 • Operation central to functioning of program
 • Contained inside deeply nested loops
 • Executed as often as any other part of algorithm
• Sources
 • Loops
 • Recursion
Critical Section Example 1

• Code (for input size \(n \))
 1. A
 2. for (int i = 0; i < n; i++) {
 3. B
 4. }
 5. C

• Code execution
 • A \(\Rightarrow \) once
 • B \(\Rightarrow \) \(n \) times
 • C \(\Rightarrow \) once

• Time \(\Rightarrow 1 + n + 1 = O(n) \)
Critical Section Example 2

• Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++) {
 3. B
 4. for (int j = 0; j < n; j++) {
 5. C
 6. }
 7. }
 8. D

• Code execution
 • A \Rightarrow once
 • B \Rightarrow n times
 • C \Rightarrow n^2 times
 • D \Rightarrow once
• Time $\Rightarrow 1 + n + n^2 + 1 = O(n^2)$
Critical Section Example 3

• Code (for input size \(n\))
 1. A
 2. for (int \(i = 0; i < n; i++\)) {
 3. for (int \(j = i+1; j < n; j++\)) {
 4. B
 5. }
 6. }

• Code execution
 • A \(\Rightarrow\) once
 • B \(\Rightarrow\) \(\frac{1}{2} n (n-1)\) times

• Time \(\Rightarrow\) \(1 + \frac{1}{2} n^2 = O(n^2)\)
Critical Section Example 4

• Code (for input size n)
 1. A
 2. for (int i = 0; i < n; i++) {
 3. for (int j = 0; j < 10000; j++) {
 4. B
 5. }
 6. }

• Code execution
 • A \implies \text{once}
 • B \implies 10000 \text{ n times}

• Time \implies 1 + 10000 \text{ n = O(n)}
Critical Section Example 5

• Code (for input size n)
 1. for (int $i = 0; i < n; i++$) {
 2. for (int $j = 0; j < n; j++$)
 3. A
 4. for (int $i = 0; i < n; i++$)
 5. for (int $j = 0; j < n; j++$)
 6. B

• Code execution
 • A $\Rightarrow n^2$ times
 • B $\Rightarrow n^2$ times

• Time $\Rightarrow n^2 + n^2 = O(n^2)$
Critical Section Example 6

• Code (for input size n)
 1. \(i = 1 \)
 2. while \((i < n)\) {
 3. \(A \)
 4. \(i = 2 \times i \)
 5. \(B \)

• Code execution
 • \(A \Rightarrow \log(n) \) times
 • \(B \Rightarrow 1 \) times

• Time \(\Rightarrow \log(n) + 1 = O(\log(n)) \)
Critical Section Example 7

• Code (for input size n)
 1. DoWork (int n)
 2. if (n == 1)
 3. A
 4. else {
 5. DoWork(n/2)
 6. DoWork(n/2)
 7. }

• Code execution
 • A ⇒ 1 times
 • DoWork(n/2) ⇒ 2 times

• Time(1) ⇒ 1

Time(n) = 2 × Time(n/2) + 1
Recursive Algorithms

• Definition
 • An algorithm that calls itself

• Components of a recursive algorithm
 1. Base cases
 • Computation with no recursion
 2. Recursive cases
 • Recursive calls
 • Combining recursive results
Recursive Algorithm Example

- Code (for input size \(n \))

1. DoWork (int n)
2. if (n == 1)
3. A
4. else {
5. DoWork(n/2)
6. DoWork(n/2)
7. }

base case
recursive cases
Comparing Complexity

• Compare two algorithms
 • $f(n)$, $g(n)$

• Determine which increases at faster rate
 • As problem size n increases

• Can compare ratio

 • If ∞, $f()$ is larger
 • If 0, $g()$ is larger
 • If constant, then same complexity

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)}
\]
Complexity Comparison Examples

• $\log(n)$ vs. $n^{\frac{1}{2}}$

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{\log(n)}{n^{\frac{1}{2}}} \quad \to \quad 0
\]

• 1.001^n vs. n^{1000}

\[
\lim_{n \to \infty} \frac{f(n)}{g(n)} \quad \lim_{n \to \infty} \frac{1.001^n}{n^{1000}} \quad \to \quad ??
\]

Not clear, use L’Hopital’s Rule
Additional Complexity Measures

- **Upper bound**
 - Big-O \(\Rightarrow O(\ldots) \)
 - Represents upper bound on # steps

- **Lower bound**
 - Big-Omega \(\Rightarrow \Omega(\ldots) \)
 - Represents lower bound on # steps

- **Combined bound**
 - Big-Theta \(\Rightarrow \Theta(\ldots) \)
 - Represents combined upper/lower bound on # steps
 - Best possible asymptotic solution
2D Matrix Multiplication Example

- Problem
 - \(C = A \times B \)

- Lower bound
 - \(\Omega(n^2) \)
 Required to examine 2D matrix

- Upper bounds
 - \(O(n^3) \)
 Basic algorithm
 - \(O(n^{2.807}) \)
 Strassen’s algorithm (1969)
 - \(O(n^{2.376}) \)
 Coppersmith & Winograd (1987)

- Improvements still possible (open problem)
 - Since upper & lower bounds do not match