Recursive Algorithms

Department of Computer Science
University of Maryland, College Park
400-level Courses Presentation

• Tuesday (March 13), Wednesday (March 14) and Thursday (March 15) in CSIC 1115 starting at 5:00 each day.

• Professors give a short (approximately 15 minute) presentation on both the content and the logistics of how they plan to teach their 400-level course during the upcoming semester.
Recursion

• Recursion is a strategy for solving problems
 • A procedure that calls itself

• Approach
 • If (problem instance is simple / trivial)
 • Solve it directly
 • Else
 • Simplify problem instance into smaller instance(s) of the original problem
 • Solve smaller instance using same algorithm
 • Combine solution(s) to solve original problem
Example – Factorial

- Factorial definition
 - \(n! = n \times (n-1) \times (n-2) \times (n-3) \times \ldots \times 3 \times 2 \times 1 \)
 - \(0! = 1 \)

- To calculate factorial of \(n \)
 - Base case
 - If \(n = 0 \), return 1
 - Recursive step
 - Calculate the factorial of \(n-1 \)
 - Return \(n \times \) (the factorial of \(n-1 \))

- Code
  ```c
  int fact ( int n ) {
    if ( n == 0 ) return 1; // base case
    return n * fact(n-1);   // recursive step
  }
  ```
Properties

• Recursion relies on the call stack
 • State of current procedure is saved when procedure is recursively invoked
 • Every procedure invocation gets own stack space
 • Let’s draw a diagram for factorial(4)
• Any problem solvable with recursion may be solved with iteration (and vice versa)
 • Use iteration with explicit stack to store state
 • Algorithm may be simpler for one approach
Recursion vs. Iteration

- Recursive algorithm

```c
int fact ( int n ) {
    if ( n == 0 ) return 1;
    return n * fact(n-1);
}
```

- Iterative algorithm

```c
int fact ( int n ) {
    int i, res;
    res = 1;
    for (i=n; i>0; i--) {
        res = res * i;
    }
    return res;
}
```

Recursive algorithm is closer to factorial definition
Examples

• Find \rightarrow To find an element in an array
 • Base case
 • If array is empty, return false
 • Recursive step
 • If 1$^{\text{st}}$ element of array is given value, return true
 • Skip 1$^{\text{st}}$ element and recur on remainder of array

• Count Instances \rightarrow To count # of elements in an array
 • Base case
 • If array is empty, return 0
 • Recursive step
 • Skip 1$^{\text{st}}$ element and recur on remainder of array
 • Add 1 to result

• Some recursive problems require an auxiliary function
 • Auxiliary function – the one that actually is recursive

• Example: ArrayExamples.java
Examples

• Let’s look at recursive solutions for a linked list
 • Find
 • Count
 • Print list
 • Print list in reverse
Recursion vs. Iteration

- **Iterative algorithms**
 - May be more efficient
 - No additional function calls
 - Run faster, use less memory

- **Recursive algorithms**
 - Higher overhead
 - Time to perform function call
 - Memory for call stack
 - May be simpler algorithm
 - Easier to understand, debug, maintain
 - Natural for backtracking searches
 - Suited for recursive data structures
 - Trees, graphs…
Making Recursion Work

• Designing a correct recursive algorithm

• Verify
 • Base case is
 • Recognized correctly
 • Solved correctly
 • Recursive case
 • Solves 1 or more simpler subproblems
 • Can calculate solution from solution(s) to subproblems
 • Makes progress toward the base case

• Uses principle of proof by induction
Proof By Induction

• Mathematical technique

• A theorem is true for all $n \geq 0$ if
 • Base case
 • Prove theorem is true for $n = 0$, and
 • Inductive step
 • Assume theorem is true for n (inductive hypothesis)
 • Prove theorem must be true for $n+1$
Types of Recursion

- Tail recursion
 - Single recursive call at end of function
 - Example

    ```
    int factorial(int n, int partialResult) {
        if (n == 0)
            return partialResult;
        return factorial(n-1, n*partialResult);
    }
    ```
 - Can easily transform to iteration (loop)
Types of Recursion

• Non-tail recursion
 • Recursive call(s) not at end of function
 • Example
    ```c
    int nontail( int n ) {
        ...
        x = nontail(n-1) ;
        y = nontail(n-2) ;
        z = x + y;
        return z;
    }
    ```
 • Can transform to iteration using explicit stack
Possible Problems – Infinite Loop

- Infinite recursion
 - If recursion not applied to simpler problem

```c
int bad ( int n ) {
    if ( n == 0 ) return 1;
    return bad(n);
}
```

- Will infinite loop
- Eventually halt when runs out of (stack) memory
 - Stack overflow
Possible Problems – Efficiency

- May perform excessive computation
 - If recomputing solutions for subproblems
- Example
 - Fibonacci numbers
 - fibonacci(0) = 1
 - fibonacci(1) = 1
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
- Example: Fibonacci.java
Possible Problems – Efficiency

• Recursive algorithm to calculate fibonacci(n)
 • If n is 0 or 1, return 1
 • Else compute fibonacci(n-1) and fibonacci(n-2)
 • Return their sum
• Simple algorithm \Rightarrow exponential time $O(2^n)$
 • Computes fibonacci(1) 2^n times
• Can solve efficiently using
 • Iteration
 • Dynamic programming
• Will examine different algorithm strategies later…
Examples of Recursive Algorithms

- Towers of Hanoi
- Binary search
- Quicksort
- N-queens
- Fractals
Example – Towers of Hanoi

• Problem
 • Move stack of disks between pegs
 • Can only move top disk in stack
 • Only allowed to place disk on top of larger disk
Example – Towers of Hanoi

• To move a stack of n disks from peg X to Y
 • Base case
 • If $n = 1$, move disk from X to Y
 • Recursive step
 • Move top $n-1$ disks from X to 3rd peg
 • Move bottom disk from X to Y
 • Move top $n-1$ disks from 3rd peg to Y

Iterative algorithm would take much longer to describe!
N-Queens

• Goal
 • Place queens on a board such that every row and column contains one queen, but no queen can attack another queen

• Recursive approach
 • To place queens on N x N board
 • Assume you’ve already placed K queens
Fractals

• Goal
 • Construct shapes using a simple recursive definition with a natural appearance

• Properties
 • Appears similar at all scales of magnification
 • Therefore “infinitely complex”
 • Not easily described in Euclidean geometry