CMSC 330: Organization of Programming Languages

This Lecture
- Reducing NFA to DFA
 - ϵ-closure
 - Subset algorithm
- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA

How NFA Works
- When NFA processes a string
 - NFA may be in several possible states
 - Multiple transitions with same label
 - ϵ-transitions
- Example
 - After processing "a"
 - NFA may be in states
 - S1
 - S2
 - S3

Reducing NFA to DFA
- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA states
- Example

Reducing NFA to DFA (cont.)
- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - NFA (Σ, Q, q_0, δ)
 - Output
 - DFA ($\Sigma, R, r_0, F, \delta$)
 - Using
 - ϵ-closure(p)
 - move(p, a)

Last Lecture
- Finite automata
 - Alphabet, states...
 - ($\Sigma, Q, q_0, F, \delta$)
- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\epsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only ε-transitions
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 \((p, p_1) \in \delta, (p_1, p_2) \in \delta, \ldots, (p_n, q) \in \delta \)

ε-closure(\(p \))
- Set of states reachable from \(p \) using ε-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\epsilon} q \)
 - ε-closure(\(p \)) = \{ \(q \mid p \xrightarrow{\epsilon} q \) \}
- Note ε-closure(\(p \)) always includes \(p \)
 - ε-closure(\(p \)) may be applied to set of states (take union)

ε-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{a} S_2 \)
 - \(S_2 \xrightarrow{b} S_3 \)
 - \(S_1 \xrightarrow{\epsilon} S_3 \)

ε-closures
- ε-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
- ε-closure(\(S_2 \)) = \{ \(S_2, S_3 \) \}
- ε-closure(\(S_3 \)) = \{ \(S_3 \) \}
- ε-closure(\{ \(S_1, S_2 \) \}) = \{ \(S_1, S_2, S_3 \) \cup \{ S_2, S_3 \) \}

ε-closure: Example 2

- Following NFA contains
 - \(S_1 \xrightarrow{a} S_2 \)
 - \(S_3 \xrightarrow{b} S_2 \)
 - \(S_1 \xrightarrow{\epsilon} S_2 \)

ε-closures
- ε-closure(\(S_1 \)) = \{ \(S_1, S_2, S_3 \) \}
- ε-closure(\(S_2 \)) = \{ \(S_2 \) \}
- ε-closure(\(S_3 \)) = \{ \(S_2, S_3 \) \}
- ε-closure(\{ \(S_2, S_3 \) \}) = \{ \(S_2 \) \cup \{ S_2, S_3 \) \}

ε-closure: Practice

- Find ε-closures for following NFA

Find ε-closures for the NFA you construct for
- The regular expression \((0|1)^*111(0^*1) \)

Calculating move(\(p, a \))

- move(\(p, a \))
 - Set of states reachable from \(p \) using exactly one transition on \(a \)
 \(\rightarrow \) Set of states \(q \) such that \(p, a, q \in \delta \)
 \(
 \rightarrow \) move(\(p, a \)) = \{ \(q \mid p, a, q \in \delta \) \}
 - Note move(\(p, a \)) may be empty \(\emptyset \)
 \(
 \rightarrow \) If no transition from \(p \) with label \(a \)

move(\(a, p \)) : Example 1

- Following NFA
 - \(\Sigma = \{ a, b \} \)

Move
- move(\(S_1, a \)) = \{ \(S_2, S_3 \) \}
- move(\(S_1, b \)) = \emptyset
- move(\(S_2, a \)) = \emptyset
- move(\(S_2, b \)) = \{ \(S_3 \) \}
- move(\(S_3, a \)) = \emptyset
- move(\(S_3, b \)) = \emptyset
move(a,p) : Example 2

- Following NFA
 - $\Sigma = \{a, b\}$

- Move
 - move(S1, a) = { S2 }
 - move(S1, b) = { S3 }
 - move(S2, a) = { S3 }
 - move(S2, b) = \emptyset
 - move(S3, a) = \emptyset
 - move(S3, b) = \emptyset

NFA → DFA Reduction Algorithm

- Input NFA (Σ, Q, q_0, F$_{\text{in}}$, δ), Output DFA (Σ, R, r_0, F$_{\text{fin}}$, δ)

- Algorithm
 - Let $r_0 = \varepsilon$-closure(q_0), add it to R
 - DFA start state
 - While 3 unmarked state $r \in R$
 - Mark r
 - process DFA state r
 - For each $a \in \Sigma$
 - Let S = { s | q \in R & move(q,a) = s }
 - states reached via a
 - Let $e = \varepsilon$-closure(S)
 - states reached via ε
 - If $e \in R$
 - If state e is new
 - add e to R (unmarked)
 - add transition $r \rightarrow e$
 - Let $F_d = \{ r | \exists s \in r \text{ with } s \in F_{\text{in}} \}$
 - final if include state in F_{fin}
 - Add i
 - Add transition $r \rightarrow \sigma$

NFA → DFA Example 1

- Start = ε-closure(S1) = { S1, S3 }
 - DFA start state
- $R = \{ (S1, S3) \}$
 - DFA start state
- $r \in R = (S1, S3)$
 - DFA start state
- $\delta = \varepsilon$-closure((S1, S3)) = { S2 }
 - DFA start state
- Move((S1, S3), a) = (S2)
 - DFA transition
- Move((S1, S3), b) = \emptyset
 - DFA transition

NFA → DFA Example 1 (cont.)

- $R = \{ (S1, S3), (S2) \}$
 - DFA start state
- $r \in R = (S2)$
 - DFA start state
- Move((S2), a) = \emptyset
 - DFA transition
- Move((S2), b) = { S3 }
 - DFA transition
- $\delta = \varepsilon$-closure((S3)) = { S3 }
 - DFA transition
- $\delta = \delta \cup \{(S1, S3), a, (S2)\}$
 - DFA transition
- Move((S1, S3), b) = \emptyset
 - DFA transition

NFA → DFA Example 1 (cont.)

- $R = \{ (S1, S3), (S2), (S3) \}$
 - DFA start state
- $r \in R = (S3)$
 - DFA start state
- Move((S3), a) = \emptyset
 - DFA transition
- Move((S3), b) = \emptyset
 - DFA transition
- $F_d = \{ (S1, S3), (S3) \}$
 - DFA transition
 - Since $S3 \in F_{\text{fin}}$
- Done!
NFA → DFA Example 3

- **NFA**
 - Graph with states A, B, C, D, and E.
 - Transitions labeled with a, b, c, and ε.

- **DFA**
 - Graph with states A, B, C, D, and E.
 - Transitions labeled with a, b, c, and ε.

\[R = \{ (A,E), (B,D,E), (C,D), (E) \} \]

Equivalence of DFAs and NFAs

- Any string from \(S \) to either \(D \) or \(CD \)
 - Represents a path from A to D in the original NFA

Equivalence of DFAs and NFAs (cont.)

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with \(n \) states, DFA may have \(2^n \) states
 - Since a set with \(n \) items may have \(2^n \) subsets
 - Corollary
 - Reducing a NFA with \(n \) states may be \(O(2^n) \)

Minimizing DFA

- Result from CS theory
 - Every regular language is recognizable by a minimum-state DFA that is unique up to state names
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
 - Two minimum-state DFAs have same underlying shape

Minimizing DFA: Hopcroft Reduction

- Intuition
 - Look for states that can be distinguish from each other
 - End up in different accept / non-accept state with identical input

- Algorithm
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively refine partitions (until partitions remain fixed)
 - Split a partition if members have transitions to different partitions for same input
 - Two states \(x, y \) belong in same partition if and only if for all symbols in \(\Sigma \) they transition to the same partition
 - Update transitions & remove dead states

Splitting Partitions

- No need to split partition \(\{S,T,U,V\} \)
 - All transitions on \(a \) lead to identical partition P2
 - Even though transitions on \(a \) lead to different states
Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\}\) into \(\{S,T\},\{U\}\)
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)

<table>
<thead>
<tr>
<th>P1</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P3</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \(\{S,T,U\}\)
 - After splitting partition \(\{X,Y\}\) into \(\{X\},\{Y\}\)
 - Need to split partition \(\{S,T,U\}\) into \(\{S,T\},\{U\}\)

DFA Minimization Algorithm (1)

- Input DFA \(\langle \Sigma, Q, q_0, F, \delta \rangle\). Output DFA \(\langle \Sigma, R, r_0, F, \delta \rangle\)
- Algorithm
 - Let \(p_0 = F_0, p = Q - F\) // initial partitions = final, nonfinal states
 - Let \(R = \{ p | p \in \{ p_0, p \} \text{ and } p \neq \emptyset \}\), \(P = \emptyset\) // add to \(R\) if nonempty
 - While \(P \neq R\) do
 - Let \(P = R, R = \emptyset\) // while partitions changed on prev iteration
 - For each \(p \in P\) // for each partition from previous iteration
 - \(p_0 = p, p \in R\) \(\Rightarrow\) split partition, if necessary
 - \(R = R \cup \{ p | p \in \{ p_0, p \} \text{ and } p \neq \emptyset \}\) // add to \(R\) if nonempty
 - \(F_0 = \{ p | p \in R\} \text{ and exists } s \in p \text{ such that } s \in F_0\} // partition w/ starting state
 - \(F_0 = \{ p | p \in R\} \text{ and exists } s \in p \text{ such that } s \in F_0\} // partition w/ final states
 - \(\delta(p,c) = q \text{ when } \delta(s,c) = r \text{ where } s \in p \text{ and } r \in q\) // add transitions

DFA Minimization Algorithm (2)

- Algorithm for \(\text{split}(p,P)\)
 - Choose some \(r \subseteq p\), let \(q = p - \{r\}, m = \{\}\) // pick some state \(r\) in \(p\)
 - For each \(s \subseteq q\) // for each state in \(p\) except for \(r\)
 - For each \(c \in \Sigma\) // for each symbol in alphabet
 - If \(\delta(r,c) = q_1\) and \(\delta(s,c) = q_2\) and \(q_1 \neq q_2\)
 - \(m = m \cup \{s\}\) // add \(s\) to \(m\) if \(q_1\)'s not in same partition
 - \(m = m \cup \{r\}\) // \(m\) is states that behave differently than \(r\)
 - \(m\) may be \(\emptyset\) if all states behave the same
 - \(p - m = \text{states that behave the same as } r\)

Minimizing DFA: Example 1

- DFA

<table>
<thead>
<tr>
<th>P2</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

 - Initial partitions
 - Accept \(\{R\}\) \(\rightarrow\) P1
 - Reject \(\{S, T\}\) \(\rightarrow\) P2
 - Split partition? \(\rightarrow\) Not required, minimization done
 - \(\text{move}(S,a) = T \rightarrow P_2\)
 - \(\text{move}(T,a) = T \rightarrow P_2\)

Minimizing DFA: Example 2

- DFA

<table>
<thead>
<tr>
<th>P2</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P1</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

 - Initial partitions
 - Accept \(\{R\}\) \(\rightarrow\) P1
 - Reject \(\{S, T\}\) \(\rightarrow\) P2
 - Split partition? \(\rightarrow\) Not required, minimization done
 - \(\text{move}(S,a) = T \rightarrow P_2\)
 - \(\text{move}(T,a) = T \rightarrow P_2\)
Minimizing DFA: Example 3

- **DFA**
 - Initial partitions
 - Accept \{ R \} \rightarrow P1
 - Reject \{ S, T \} \rightarrow P2

- **Split partition?** \rightarrow Yes, different partitions for B
 - move(S,a) = T \rightarrow P2
 - move(S,b) = T \rightarrow P2
 - move(T,a) = T \rightarrow P2
 - move(T,b) = R \rightarrow P1

Complement of DFA

- **Given a DFA accepting language L**
 - How can we create a DFA accepting its complement?
 - Example DFA
 - \(\Sigma = \{ a, b \} \)

Complement of DFA (cont.)

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- **Note this only works with DFAs**
 - Why not with NFAs?

Reducing DFAs to REs

- **General idea**
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA

Relating REs to DFAs and NFAs

- **Why do we want to convert between these?**
 - Can make it easier to express ideas
 - Can be easier to implement
Implementing DFAs

It's easy to build a program which mimics a DFA

```
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            default:   printf("unknown state; I'm confused\n"); break;
        }
        case '1':  cur_state = 1; break;
        case '
': printf("rejected\n"); return 0;
        default:   printf("rejected\n"); return 0;
    }
}
```

Implementing DFAs (Alternative)

Alternatively, use generic table-driven DFA

```
given components (Σ, Q, q₀, F, δ) of a DFA:
let q = q₀
while (there exists another symbol s of the input string)
    q = δ(q, s);
if q ∈ F then accept
else reject
```

Run Time of DFA

- How long for DFA to decide to accept/reject string s?
 - Assume we can compute δ(q, c) in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing DFA for RE A may take O(2^|A|) time
 - But usually not the case in practice
- So there's the initial overhead
 - But then processing strings is fast

Regular Expressions in Practice

- Regular expressions are typically "compiled" into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of (Σ, Q, q₀, F, δ₀, δ₁), the components of the DFA produced from the RE
- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity

Practice

- Convert to a DFA

- Convert to an NFA and then to a DFA
 - (0|1)*110*
 - Strings of alternating 0 and 1
 - aba"[(ba]b"

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm
- DFA
 - Minimization, complement
 - Implementation