CMSC 411
Computer Systems Architecture
Lecture 1
Computer Architecture at Crossroads

Slides from Alan Sussman, Pete Keleher...

Administrivia

• Class web page
 – http://www.cs.umd.edu/class/spring2011/cmsc411
 – Linked in from CS dept class web pages
• Class accounts
 – CSIC Linux cluster
• Recommended textbook
What can you expect to learn?

• What to look for in buying a PC
 – Can brag to parents and friends!
• How computer architecture affects programming style
• How programming style affect computer architecture
• How processors/disks/memory work
• How processors exploit instruction/thread parallelism
• A great deal of jargon

The Textbook – H&P

• Lectures provide main material
• Text provides detailed supplementary material
Chapter 1 of H&P

• Read Chapter 1
• Historical Perspective - Section 1.13
 – Computers as we know them are roughly 60 years old
 – The von Neumann machine model that underlies computer design is only partially von Neumann’s
 – Konrad Zuse say he had “the bad luck of being too early”
 » Optional: Read his own recollections in TR 180 of ETH, Zürich,
 http://www.inf.ethz.ch/research/disstechreps/techreports/show?serial=180&lang=en (contains both German and English)
 – No one was able to successfully patent the idea of a stored-program computer, much to the dismay of Eckert and Mauchly

Early development steps

• Make input and output easier than wiring circuit boards and reading lights
• Make programming easier by developing higher level programming languages, so that users did not need to use binary machine code instructions
 – First compilers in late 1950’s, for Fortran and Cobol
• Develop storage devices
Later development steps

• Faster
• More storage
• Cheaper
• Networking and parallel computing
• Better user interfaces
• Ubiquitous applications
• Development of standards

Perspective: An example

• Most powerful computer in 1988: CRAY Y-MP
• 1993: a desktop workstation (IBM Power-2) matched its power at less than 10% of the cost
• How did this happen?
 – hardware improvements, e.g., squeezing more circuits into a smaller area
 – improvements in instruction-set design, e.g., making the machine faster on a small number of frequently used instructions
 – improvements in compilation, e.g., optimizing code to reduce memory accesses and make use of faster machine instructions
Crossroads: Conventional Wisdom in Comp. Arch

- Old Conventional Wisdom: Power is free, Transistors expensive
- New Conventional Wisdom: “Power wall” Power expensive, transistors free (Can put more on chip than can afford to turn on)
- Old CW: Sufficiently increasing Instruction Level Parallelism (ILP) via compilers, innovation (Out-of-order, speculation, VLIW, …)
- New CW: “ILP wall” law of diminishing returns on more HW for ILP
- Old CW: Multiplies are slow, Memory access is fast
- New CW: “Memory wall” Memory slow, multiplies fast (200 clock cycles to DRAM memory, 4 clocks for multiply)
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall
 - Uniprocessor performance now 2X / 5(?) yrs
⇒ Sea change in chip design: multiple “cores”
 (2X processors per chip / ~ 2 years)
 » More simpler processors are more power efficient
Crossroads: Uniprocessor Performance

From Hennessy and Patterson, 4th edition

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

Sea Change in Chip Design

• Intel 4004 (1971): 4-bit processor, 2312 transistors, 0.4 MHz, 10 micron PMOS, 11 mm\(^2\) chip

• RISC II (1983): 32-bit, 5 stage pipeline, 40,760 transistors, 3 MHz, 3 micron NMOS, 60 mm\(^2\) chip

• 125 mm\(^2\) chip, 0.065 micron CMOS = 2312 RISC II+FPU+Icache+Dcache
 – RISC II shrinks to ~ 0.02 mm\(^2\) at 65 nm
 – Caches via DRAM or 1 transistor SRAM (www.t-ram.com)
 – Proximity Communication via capacitive coupling at > 1 TB/s?
 (Ivan Sutherland @ Sun / Berkeley)

• Processor is the new transistor?
Multiprocessors - Déjà vu all over again?

- Multiprocessors imminent in 1970s, ‘80s, ‘90s, ...
- “... today’s processors ... are nearing an impasse as technologies approach the speed of light...”
- Transputer was premature
 ⇒ Custom multiprocessors strove to lead uniprocessors
 ⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years
- “We are dedicating all of our future product development to multicore designs. ... This is a sea change in computing”
 Paul Otellini, President, Intel (2004)
- Difference is all microprocessor companies switch to multiprocessors (AMD, Intel, IBM, Sun; all new Apples 2 CPUs)
 ⇒ Procrastination penalized: 2X sequential perf. / 5 yrs
 ⇒ Biggest programming challenge: 1 to 2 CPUs

Problems with Sea Change

- Algorithms, Programming Languages, Compilers, Operating Systems, Architectures, Libraries, ... not ready to supply Thread Level Parallelism or Data Level Parallelism for 1000 CPUs / chip,
- Architectures not ready for 1000 CPUs / chip
 - Unlike Instruction Level Parallelism, cannot be solved just by computer architects and compiler writers alone, but also cannot be solved *without* participation of computer architects