Moore’s Law: 2X transistors / “year”

- “Cramming More Components onto Integrated Circuits”
 - Gordon Moore, Electronics, 1965
- # on transistors / cost-effective integrated circuit double every N months (12 ≤ N ≤ 24)
Tracking Technology Performance Trends

- Drill down into 4 technologies:
 - Disks,
 - Memory,
 - Network,
 - Processors
- Compare ~1980 Archaic (Nostalgic) vs. ~2000 Modern (Newfangled)
 - Performance Milestones in each technology
- Compare for Bandwidth vs. Latency improvements in performance over time
- Bandwidth: number of events per unit time
 - E.g., Mbits / second over network, Mbytes / second from disk
- Latency: elapsed time for a single event
 - E.g., one-way network delay in microseconds, average disk access time in milliseconds

Disks: Archaic(Nostalgic) v. Modern(Newfangled)

- CDC Wren I, 1983
 - 3600 RPM
 - 0.03 GBytes capacity
 - Tracks/Inch: 800
 - Bits/Inch: 9550
 - Three 5.25” platters
 - Bandwidth: 0.6 MBytes/sec
 - Latency: 48.3 ms
 - Cache: none
- Seagate 373453, 2003
 - 15000 RPM
 - 73.4 GBytes
 - Tracks/Inch: 64000
 - Bits/Inch: 533,000
 - Four 2.5” platters (in 3.5” form factor)
 - Bandwidth: 86 MBytes/sec
 - Latency: 5.7 ms
 - Cache: 8 MBytes

(4X) (2500X) (80X) (60X) (140X) (8X)
Latency Lags Bandwidth (for last ~20 years)

• Performance Milestones

 • Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)
 (latency = simple operation w/o contention
 BW = best-case)

Memory: Archaic (Nostalgic) v. Modern (Newfangled)

• 1980 DRAM (asynchronous)
 • 0.06 Mbits/chip
 • 64,000 xtors, 35 mm²
 • 16-bit data bus per module, 16 pins/chip
 • 13 Mbytes/sec
 • Latency: 225 ns
 • (no block transfer)

• 2000 Double Data Rate Synchr. (clocked) DRAM
 • 256.00 Mbits/chip (4000X)
 • 256,000,000 xtors, 204 mm²
 • 64-bit data bus per DIMM, 66 pins/chip (4X)
 • 1600 Mbytes/sec (120X)
 • Latency: 52 ns (4X)
 • Block transfers (page mode)
LANs: Archaic (Nostalgic)v. Modern (Newfangled)

- Ethernet 802.3
- Year of Standard: 1978
- 10 Mbits/s link speed
- Latency: 3000 µsec
- Shared media
- Coaxial cable

- Ethernet 802.3ae
- Year of Standard: 2003
- 10,000 Mbits/s (1000X) link speed
- Latency: 190 µsec (15X)
- Switched media
- Category 5 copper wire

"Cat 5" is 4 twisted pairs in bundle

Twisted Pair:

Copper, 1mm thick, twisted to avoid antenna effect
Latency Lags Bandwidth (last ~20 years)

- **Performance Milestones**
 - **Ethernet**: 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x, 1000x)
 - Memory Module: 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x, 120x)
 - Disk: 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

(CPUs = simple operation w/o contention
BW = best-case)

CPUs: Archaic (Nostalgic) v. Modern (Newfangled)

- 1982 Intel 80286
 - 12.5 MHz
 - 2 MIPS (peak)
 - Latency 320 ns
 - 134,000 xtors, 47 mm²
 - 16-bit data bus, 68 pins
 - Microcode interpreter, separate FPU chip
 - (no caches)

- 2001 Intel Pentium 4
 - 1500 MHz (120X)
 - 4500 MIPS (peak) (2250X)
 - Latency 15 ns (20X)
 - 42,000,000 xtors, 217 mm²
 - 64-bit data bus, 423 pins
 - 3-way superscalar, Dynamic translate to RISC, Superpipelined (22 stage), Out-of-Order execution
 - On-chip 8KB Data caches, 96KB Instr. Cache, 256KB L2 cache
Latency Lags Bandwidth (last ~20 years)

- **Performance Milestones**
 - **Processor:** ‘286, ‘386, ‘486, Pentium, Pentium Pro, Pentium 4 (21x,2250x)
 - **Ethernet:** 10Mb, 100Mb, 1000Mb, 10000 Mb/s (16x,1000x)
 - **Memory Module:** 16bit plain DRAM, Page Mode DRAM, 32b, 64b, SDRAM, DDR SDRAM (4x,120x)
 - **Disk:** 3600, 5400, 7200, 10000, 15000 RPM (8x, 143x)

Rule of Thumb for Latency Lagging BW

- In the time that bandwidth doubles, latency improves by no more than a factor of 1.2 to 1.4 (and capacity improves faster than bandwidth)
- Stated alternatively: Bandwidth improves by more than the square of the improvement in Latency
6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency
 - Faster transistors, more transistors, more pins help Bandwidth
 - MPU Transistors: 0.130 vs. 42 M xtors (300X)
 - DRAM Transistors: 0.064 vs. 256 M xtors (4000X)
 - MPU Pins: 68 vs. 423 pins (6X)
 - DRAM Pins: 16 vs. 66 pins (4X)
 - Smaller, faster transistors but communicate over (relatively) longer wires: limits latency
 - Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)
 - MPU Die Size: 35 vs. 204 mm² (ratio sqrt ⇒ 2X)
 - DRAM Die Size: 47 vs. 217 mm² (ratio sqrt ⇒ 2X)

2. Distance limits latency
 - Size of DRAM block ⇒ long bit and word lines ⇒ most of DRAM access time
 - Speed of light and computers on network

3. Bandwidth easier to sell (“bigger=better”)
 - E.g., 10 Gbits/s Ethernet (“10 Gig”) vs. 10 μsec latency Ethernet
 - 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
 - Even if just marketing, customers now trained
 - Since bandwidth sells, more resources thrown at bandwidth, which further tips the balance
6 Reasons Latency Lags Bandwidth (cont’d)

4. Latency helps BW, but not vice versa
 - Spinning disk faster improves both bandwidth and rotational latency
 » 3600 RPM ⇒ 15000 RPM = 4.2X
 » Average rotational latency: 8.3 ms ⇒ 2.0 ms
 » Things being equal, also helps BW by 4.2X
 - Lower DRAM latency
 ⇒ More access/second (higher bandwidth)
 - Higher linear density helps disk BW (and capacity), but not disk Latency
 » 9,550 BPI ⇒ 533,000 BPI ⇒ 60X in BW

6 Reasons Latency Lags Bandwidth (cont’d)

5. Bandwidth hurts latency
 - Queues help Bandwidth, hurt Latency (Queuing Theory)
 - Adding chips to widen a memory module increases Bandwidth but higher fan-out on address lines may increase Latency

6. Operating System overhead hurts Latency more than Bandwidth
 - Long messages amortize overhead; overhead bigger part of short messages
Summary of Technology Trends

- For disk, LAN, memory, and microprocessor, bandwidth improves by square of latency improvement
 - In the time that bandwidth doubles, latency improves by no more than 1.2X to 1.4X
- Lag probably even larger in real systems, as bandwidth gains multiplied by replicated components
 - Multiple processors in a cluster or even in a chip
 - Multiple disks in a disk array
 - Multiple memory modules in a large memory
 - Simultaneous communication in switched LAN
- HW and SW developers should innovate assuming Latency Lags Bandwidth
 - If everything improves at the same rate, then nothing really changes
 - When rates vary, require real innovation

TRENDS IN SILICON COSTS
Costs

• From Figure 1.9 in H&P 3/e
• The cost of components in a $1000 PC in 2001 are:
 – CPU – 22%
 – Monitor – 19%
 – Hard drive – only 9%
 – DRAM – only 5% (for 128MB)
 – Software – 20% (OS & basic office suite)

Manufacture of DRAM and other chips

• Chips are manufactured on wafers - circular disks containing many dies (chips).
• The wafer is tested and chopped into dies.
Wafers and dies

- To find the cost of a die:
 - Number of dies per wafer is \textit{at most} the area of the wafer divided by the area of the die.
 - The cost of the wafer divided by the number of working dies per wafer is the cost of each die.

- The fraction of working dies is called the \textit{die yield}, which decreases as the area of the die increases.

- Rule of thumb (p. 20): Cost of die is proportional to the square of the die area