I/O performance measures

- **diversity**: which I/O devices can connect to the system?
- **capacity**: how many I/O devices can connect to the system?
- **bandwidth**: throughput, or how much data can be moved per unit time
- **latency**: response time, the interval between a request and its completion
- High throughput usually means slow response time!

Throughput vs. latency

Improving performance (cont.)

- Adding another server can decrease response time, if workload is held constant
 - but keeping work balanced between servers is difficult
- To design a responsive system, must understand what the "typical" user wants to do with it
- Each transaction consists of three parts:
 - entry time: the time for the user to make the request
 - system response time: the latency
 - think time: the time between system response and the next entry
- Key observation is that a faster system produces a lower think time – see Fig. 6.10

Modeling computer performance

- The usual way to model computer performance is using *queueing theory* (mathematics again)
- Unfortunately, even queueing theory does not provide a very good model, so more complicated mathematics is now being applied (e.g., stochastic differential equations)
- But, H&P only consider queueing models – and we don’t even have time to go into that now (maybe later)
Data Management Issues

- Two concerns we’ll talk about:
 - stale data
 - DMA design
- And the book has short discussions of several more, including
 - asynchronous I/O through the OS
 - file systems – server manages blocks and maintains metadata vs. disks doing it and server uses file system protocol, such as NFS (also called NAS – network attached storage)

Stale Data

- May have copies of data in
 - cache
 - memory
 - disk
- Need to make sure that always use the most recent version
 - for use in the CPU
 - for output
- Two approaches to the problem, both having disadvantages

Stale Data (cont.)

- Approach 1: Attach the I/O bus to the cache
 - Advantage: No problem of stale data, since CPU and I/O devices all see the copy in the cache
 - Disadvantage:
 - All I/O data must go through the cache, even if the CPU doesn’t need it, so performance is reduced
 - CPU and I/O bus must take turns accessing the cache, so arbitration hardware required

Stale Data (cont.)

- Approach 2: Attach the I/O bus to the memory
 - Fig. 7.15 of H&P 3rd

Stale Data (cont.)

- Advantage: I/O does not slow down the CPU
- Disadvantage:
 - The I/O system may see stale data, unless we do write-through
 - CPU might see stale data if the I/O system modifies memory after the cache copied it
- Extra hardware is required to check whether I/O data is currently held in cache
DMA design

- Direct memory access hardware needs to use either
 - virtual addresses
 - or physical addresses

- Using physical addresses:
 - If the data is longer than a page, then several addresses need to be passed
 - The data may be relocated by the operating system, changing the physical address
- Virtual addresses gives a cleaner design

Designing an I/O System

- Price, performance, and capacity issues
- Need to choose
 - which I/O devices to connect
 - how to connect them
- Example: The CPU is seldom the limiting factor for I/O performance
- Suppose the CPU can handle 10,000 I/O operations per second (IOPS)
- And suppose the average I/O size is 16 KB

I/O Systems

- The other links in the I/O chain are:
 - the I/O controller - suppose it adds 1 ms overhead per I/O operation
 - the I/O bus - suppose it is a bus that can transfer 20 MB/sec = 20 KB/ms
 - the disk - suppose it rotates at 7200 RPM, with 8 ms average seek time and 6 MB/sec transfer rate

I/O System Performance

- Consider the disk time first:
 - 7200 RPM = 7200/(60×10^3) = .12 revolutions per ms
 - 6 MB/sec = 6 KB/ms
 - So the average disk time is seek + rotational latency + transfer =
 8 ms + .12 ms + 16 / 6 = 14.9 ms
- So the average time per transfer is
 - I/O controller time + bus time + disk time = 1 ms + 16 / 20 ms + 14.9 ms = 16.7 ms
- So with one controller, one bus, and one disk, can do at most
 - 1/(16.7×10^-3) = 60 IOPS
- If this is not good enough, should analyze to see whether it is better to add more controllers, more buses, or more disks
- Another, more complex, performance analysis in Section 6.7, for the Internet Archive Cluster

Storage Example: Internet Archive

- Goal of making a historical record of the Internet
 - Internet Archive began in 1996
 - Wayback Machine interface performs time travel to see what the website at a URL looked like in the past
- It contains over a petabyte (10^15 bytes), and is growing by 20 terabytes (10^12 bytes) of new data per month
- In addition to storing the historical record, the same hardware is used to crawl the Web every few months to get snapshots of the Internet
Internet Archive Cluster

- 1U storage node PetaBox GB2000 from Capricorn Technologies
 - Contains 4 500 GB Parallel ATA (PATA) disk drives, 512 MB of DDR266 DRAM, one 10/100/1000 Ethernet interface, and a 1 GHz C3 Processor from VIA (80x86).
 - Node dissipates ~ 80 watts
- 40 GB2000s in a standard VME rack, ⇒ 80 TB of raw storage capacity
- 40 nodes are connected with a 48-port 10/100 or 10/100/1000 Ethernet switch
- 1 PetaByte = 12 racks

Estimated Cost

- VIA processor, 512 MB of DDR266 DRAM, ATA disk controller, power supply, fans, and enclosure = $500
- 7200 RPM Parallel ATA drive holds 500 GB = $375.
- 48-port 10/100/1000 Ethernet switch and all cables for a rack = $3000.
- Cost $84,500 for a 80-TB rack.
- 160 Disks are ~ 60% of the cost

Estimated Performance

- 7200 RPM Parallel ATA drive holds 500 GB, has an average time seeks of 8.5 ms, transfers at 50 MB/second from the disk. The PATA link speed is 133 MB/second.
 - performance of the VIA processor is 1000 MIPS.
 - operating system uses 50,000 CPU instructions for a disk I/O.
 - network protocol stack uses 100,000 CPU instructions to transmit a data block between the cluster and the external world
- ATA controller overhead is 0.1 ms to perform a disk I/O.
- Average I/O size is 16 KB for accesses to the historical record via the Wayback interface, and 50 KB when collecting a new snapshot
- Switch needs to support 1.6 to 3.8 Gbits/second over 40 Gbit/sec links

Estimated Reliability

- CPU/memory/enclosure MTTF is 1,000,000 hours (x 40)
- PATA Disk MTTF is 125,000 hours (x 160)
- PATA controller MTTF is 500,000 hours (x 40)
- Ethernet Switch MTTF is 500,000 hours (x 1)
- Power supply MTTF is 200,000 hours (x 40)
- Fan MTTF is 200,000 hours (x 40)
- PATA cable MTTF is 1,000,000 hours (x 40)
- MTTF for the system is 531 hours (= 3 weeks)
- 70% of time failures are disks
- 20% of time failures are fans or power supplies

Conclusions - Fallacies

- Disks never fail
 - a mean time to failure (MTTF) for one disk of 1.2M hours, or 140 years, computed by running thousands of disks for a few months, then counting the number that failed
 - but a more useful measure is the % of disks that fail in a given time period (e.g., 5 years), computed as #failed disks/total #disks
 - where # failed disks = #disks * (#hours/disk)/MTTF

- Computer systems can achieve 99.999% availability
 - that’s 5 minutes per year downtime, and highly unlikely in your environment
 - in 2001, well managed servers typically available 99% to 99.9% of time
- DRAM will replace disks in desktop and server machines
 - disk manufacturers have pushed the rate of technology improvement in disks to match or exceed that of DRAM
 - instead of DRAMs killing disks, disks are killing tapes
Conclusions - Fallacies

- Average disk seek is for a seek of 1/3 of the cylinders
 - just a rule of thumb for seeking from one random location to another random location on a different cylinder, assuming a large number of cylinders
 - problems with that rule are that:
 - seek time is not linear in distance (mechanical issues)
 - there is locality to disk accesses