Due at the start of class Thursday, April 26, 2012.

Problem 1. Use the dynamic programming algorithm to find by hand an optimal parenthesization for multiplying matrices of dimensions are given by the sequence

\[< 6, 3, 10, 5, 8, 4, 20 > . \]

Show the table. You may use a calculator.

Problem 2. The traditional world chess championship is a match of 24 games. The current champion retains the title in case the match is a tie. Not only are there wins and losses, but some games end in a draw (tie). Wins count as 1, losses as 0, and draws as 1/2. The players take turns playing white and black. White moves first, which is an advantage. Assume the champion is white in the first game, has probabilities \(w_w, w_d, \) and \(w_l \) of winning, drawing, and losing playing white, and has probabilities \(b_w, b_d, \) and \(b_l \) of winning, drawing, and losing playing black.

(a) Write down a recurrence for the chance that the champion retains the title. Assume that there are \(g \) games left to play in the match and that the champion needs to win \(i \) games (where \(i \) is either an integer or an integer plus 1/2).

(b) Write a recursive algorithm to compute the chance that the champion retains the title, using the above recurrence.

(c) Produce a memoized version of your algorithm.

(d) Give a dynamic programming algorithm to compute the chance that the champion retains the title.

(e) Analyze the running time of your dynamic programming algorithm.

Problem 3. In the Euclidean Traveling-Salesman Tour the cities are points in the Euclidean plane and distances are measured in the standard way. The problem is NP-complete. A Bitonic Euclidean Traveling-Salesman Tour starts at the leftmost city, visits cities from left-to-right until it gets to the rightmost city, and then visits cities from right-to-left until it gets back to the leftmost city. (Of course, each city is visited only once, either going left-to-right or right-to-left.) Use dynamic programming to find an optimal bitonic tour in time \(\theta(n^2) \). Make sure to state your recurrence. HINT: Scan left-to-right keeping track of the optimal left-to-right tour and the optimal right-to-left tour at the same time.