Chapter 14
Temporal Planning

Dana S. Nau
University of Maryland

3:11 PM April 18, 2012
Temporal Planning

● Motivation: want to do planning in situations where actions
 ◆ have nonzero duration
 ◆ may overlap in time

● Need an explicit representation of time

● In Chapter 10 we studied a “temporal” logic
 ◆ Its notion of time is too simple: a sequence of discrete events
 ◆ Many real-world applications require continuous time
 ◆ How to get this?
Temporal Planning

- The book presents two equivalent approaches:
 1. Use logical atoms, and extend the usual planning operators to include temporal conditions on those atoms
 » Chapter 14 calls this the “state-oriented view”
 2. Use state variables, and specify change and persistence constraints on the state variables
 » Chapter 14 calls this the “time-oriented view”
- In each case, the chapter gives a planning algorithm that’s like a temporal-planning version of PSP
The Time-Oriented View

- We’ll concentrate on the “time-oriented view”: Sections 14.3.1–14.3.3
 - It produces a simpler representation
 - State variables seem better suited for the task
- States not defined explicitly
 - Instead, can compute a state for any time point, from the values of the state variables at that time
State Variables

- A **state variable** is a partially specified function telling what is true at some time t
 - $\text{cpos}(c1) : \text{time} \rightarrow \text{containers U cranes U robots}$
 - Tells what $c1$ is on at time t
 - $\text{rloc}(r1) : \text{time} \rightarrow \text{locations}$
 - Tells where $r1$ is at time t
- Might not ever specify the entire function

- $\text{cpos}(c)$ refers to a collection of state variables
 - But we’ll be sloppy and just call it a state variable
DWR Example

- **robot r1**
 - in loc1 at time t_1
 - leaves loc1 at time t_2
 - enters loc2 at time t_3
 - leaves loc2 at time t_4
 - enters l at time t_5

- **container c1**
 - in pile1 until time t_6
 - held by crane2 until t_7
 - sits on r1 until t_8
 - held by crane4 until t_9
 - sits on p until t_{10} (or later)

- **ship Uranus**
 - stays at dock5 from t_{11} to t_{12}
Temporal Assertions

- Temporal assertion:
 - Event: an expression of the form \(x@t : (v_1, v_2) \)
 - At time \(t \), \(x \) changes from \(v_1 \) to \(v_2 \neq v_1 \)
 - Persistence condition: \(x@[t_1,t_2] : v \)
 - \(x = v \) throughout the interval \([t_1,t_2]\)
 - where
 - \(t, t_1, t_2 \) are constants or temporal variables
 - \(v, v_1, v_2 \) are constants or object variables
- Note that the time intervals are semi-open
 - Why?
Temporal Assertions

- Temporal assertion:
 - *Event*: an expression of the form $x@t : (v_1, v_2)$
 - At time t, x changes from v_1 to $v_2 \neq v_1$
 - *Persistence condition*: $x@[t_1, t_2) : v$
 - $x = v$ throughout the interval $[t_1, t_2)$
 - where
 - t, t_1, t_2 are constants or temporal variables
 - v, v_1, v_2 are constants or object variables

- Note that the time intervals are semi-open
 - Why?
 - To prevent potential confusion about x’s value at the endpoints
Chronicles

- *Chronicle*: a pair $\Phi = (F, C)$
 - F is a finite set of temporal assertions
 - C is a finite set of constraints
 - temporal constraints and object constraints
 - C must be consistent
 - i.e., there must exist variable assignments that satisfy it
- *Timeline*: a chronicle for a single state variable

- The book writes F and C in a calligraphic font
 - Sometimes I will, more often I’ll just use italics
Example

Timeline for $rloc(r1)$:

\[
\{ \begin{array}{l}
 rloc(r1)@t_1 : (l_1, loc1), \\
 rloc(r1)@[t_1, t_2) : loc1, \\
 rloc(r1)@t_2 : (loc1, l_2), \\
 rloc(r1)@t_3 : (l_3, loc2), \\
 rloc(r1)@[t_3, t_4) : loc2, \\
 rloc(r1)@t_4 : (loc2, l_4), \\
 rloc(r1)@t_5 : (l_5, loc3) \\
\end{array} \}
\]

\[
\{ \begin{array}{l}
 adjacent(l_1, loc1), adjacent(loc1, l_2), \\
 adjacent(l_3, loc2), adjacent(loc2, l_4), adjacent(l_5, loc3), \\
 t_1 < t_2 < t_3 < t_4 < t_5 \\
\end{array} \}
\]

Inconsistency in the book between Figure 14.5 and Example 14.9
C-consistency

A timeline \((F,C)\) is c-consistent (chronicle-consistent) if

- \(C\) is consistent, and
- Every pair of assertions in \(F\) are either disjoint or they refer to the same value and/or time points:
 - If \(F\) contains both \(x@[t_1,t_2]:v_1\) and \(x@[t_3,t_4]:v_2\), then \(C\) must entail \(\{t_2 \leq t_3\}, \{t_4 \leq t_1\}\), or \(\{v_1 = v_2\}\)
 - If \(F\) contains both \(x@t:(v_1,v_2)\) and \(x@[t_1,t_2]:v\), then \(C\) must entail \(\{t < t_1\}, \{t_2 < t\}, \{v = v_2, t_1 = t\}\), or \(\{t_2 = t, v = v_1\}\)
 - If \(F\) contains both \(x@t:(v_1,v_2)\) and \(x@t':(v'_1,v'_2)\), then \(C\) must entail \(\{t \neq t'\}\) or \(\{v_1 = v'_1, v_2 = v'_2\}\)

- \((F,C)\) is c-consistent iff every timeline in \((F,C)\) is c-consistent
- The book calls this consistency, not c-consistency
 - But it’s a stronger requirement than ordinary mathematical consistency
- Mathematical consistency: \(C\) doesn’t contradict the separation constraints
- c-consistency: \(C\) must actually entail the separation constraints
 - It’s sort of like saying that \((F,C)\) contains no threats
Example

Let \((F, C)\) include the timelines given earlier, plus some additional constraints:

- \(t_1 \leq t_6, \ t_7 < t_2, \ t_3 \leq t_8, \ t_9 < t_4, \ \text{attached}(p, \text{loc2})\)

Above, I’ve drawn the entire set of time constraints

\((F, C)\) is c-consistent
Support and Enablers

- Let α be either $x@t: (v,v')$ or $x@[t,t'):v$
 - Note that α requires $x = v$ either at t or just before t
- Intuitively, a chronicle $\Phi = (F,C)$ supports α if
 - F contains an assertion β that we can use to establish $x = v$ at some time $s < t$,
 - β is called the support for α
 - and if it’s consistent with Φ for v to persist over $[s,t)$ and for α to be true
- Formally, $\Phi = (F,C)$ supports α if
 - F contains an assertion β of the form $\beta = x@s: (w',w)$ or $\beta = x@[s',s):w$, and
 - \exists separation constraints C' such that the following chronicle is c-consistent:
 - $(F \cup \{ x@[s,t):v, \alpha \}, C \cup C' \cup \{ w=v, s < t \})$
 - C' can either be absent from Φ or already in Φ
- The chronicle $\delta = (\{ x@[s,t):v, \alpha \}, C' \cup \{ w=v, s < t \})$ is an enabler for α
 - Analogous to a causal link in PSP
- Just as there could be more than one possible causal link in PSP, there can be more than one possible enabler
Example

\[\beta_1 = \text{rloc}(r1) @ t_2 : (\text{loc1}, \text{routes}) \]

\[\beta_2 = \text{rloc}(r1) @ t_4 : (\text{loc2}, \text{routes}) \]

- Let \(\Phi \) be as shown
- Then \(\Phi \) supports
 \[\alpha_1 = \text{rloc}(r1) @ t : (\text{routes}, \text{loc3}) \]
 in two different ways:
 - \(\beta_1 \) establishes \(\text{rloc}(r1) = \text{routes} \) at time \(t_2 \)
 - this can support \(\alpha_1 \) if we constrain \(t_2 < t < t_3 \)
 - enabler is \(\delta_1 = \{ \text{rloc}(r1) @ [t_2,t) : \text{routes}, \alpha_1 \}, \{t_2 < t < t_3\} \)
 - \(\beta_2 \) establishes \(\text{rloc}(r1) = \text{routes} \) at time \(t_4 \)
 - this can support \(\alpha_1 \) if we constrain \(t_4 < t < t_5 \)
 - enabler is \(\delta_2 = \{ \text{rloc}(r1) @ [t_4,t) : \text{routes}, \alpha_1 \}, \{t_4 < t < t_5\} \)
Enabling Several Assertions at Once

- $\Phi = (F,C)$ supports a set of assertions $E = \{\alpha_1, \ldots, \alpha_k\}$ if both of the following are true:
 - $F \cup E$ contains a support β_i for α_i other than α_i itself
 - There are enablers $\delta_1, \ldots, \delta_k$ for $\alpha_1, \ldots, \alpha_k$ such that the chronicle $\Phi \cup \delta_1 \cup \ldots \cup \delta_k$ is c-consistent

- Note that some of the assertions in E may support each other!

- $\phi = \{\delta_1, \ldots, \delta_k\}$ is an enabler for E
Example

1. Let Φ be as shown.
2. Let α_1 be the same as before: $\alpha_1 = rloc(r1)@t:(\text{routes, loc3})$.
3. Let $\alpha_2 = rloc(r1)@[t',t'']:\text{loc3}$.

Then Φ supports $\{\alpha_1, \alpha_2\}$ in four different ways:

- As before, for α_1 we can use either β_1 and δ_1 or β_2 and δ_2.
- We can support α_2 with $\beta_3 = rloc(r1)@t_5:(\text{routes}, l)$.
 - Enabler is $\delta_3 = (\{rloc(r1)@[t_5,t'):\text{loc3}, \alpha_2\}, \{l = \text{loc3, } t_5 < t'\})$.
- Or we can support α_2 with α_1.
 - If we supported α_1 with β_1 and enabled it with δ_1, the enabler for α_2 is $\delta_4 = (\{rloc(r1)@[t,t'):\text{loc3}, \alpha_2\}, \{t < t' < t_3\})$.
 - If we supported α_1 with β_1 and enabled it with δ_2, then replace t_3 with t_5 in δ_4.

Dana Nau: Lecture slides for *Automated Planning*
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
One Chronicle Supporting Another

- Let $\Phi' = (F', C')$ be a chronicle, and suppose $\Phi = (F, C)$ supports F'.
- Let $\delta_1, \ldots, \delta_k$ be all the possible enablers of Φ'
 - For each δ_i, let $\delta'_i = \delta_1 \cup C'$
- If there is a δ'_i such that $\Phi \cup \delta'_i$ is c-consistent,
 - Then Φ supports Φ', and δ'_i is an enabler for Φ'
 - If $\delta'_i \subseteq \Phi$, then Φ entails Φ'
- The set of all enablers for Φ' is $\theta(\Phi/\Phi') = \{\delta'_i : \Phi \cup \delta'_i \text{ is c-consistent}\}$
Chronicles as Planning Operators

- Chronicle planning operator: a pair \(o = (\text{name}(o), (F(o), C(o))) \), where
 - \(\text{name}(o) \) is an expression of the form \(o(t_s, t_e, \ldots, v_1, v_2, \ldots) \)
 - \(o \) is an operator symbol
 - \(t_s, t_e, \ldots, v_1, v_2, \ldots \) are all the temporal and object variables in \(o \)
 - \((F(o), C(o)) \) is a chronicle

- Action: a (partially) instantiated operator, \(a \)
- If a chronicle \(\Phi \) supports \((F(a), C(a)) \), then \(a \) is applicable to \(\Phi \)
 - \(a \) may be applicable in several ways, so the result is a set of chronicles
 - \(\gamma(\Phi, a) = \{ \Phi \cup \phi \mid \phi \in \theta(a/\Phi) \} \)
Example: Operator for Moving a Robot

\[
\text{move}(t_s, t_e, t_1, t_2, r, l, l') = \begin{cases} \\
\text{rloc}(r)@t_s & : (l, \text{routes}), \\
\text{rloc}(r)@[t_s, t_e) & : \text{routes}, \\
\text{rloc}(r)@t_e & : (\text{routes}, l'), \\
\text{contains}(l)@t_1 & : (r, \text{empty}), \\
\text{contains}(l')@t_2 & : (\text{empty}, r), \\
t_s < t_1 < t_2 < t_e, \\
\text{adjacent}(l, l') \end{cases}
\]
Applying a Set of Actions

- Just like several temporal assertions can support each other, several actions can also support each other
 - Let $\pi = \{a_1, \ldots, a_k\}$ be a set of actions
 - Let $\Phi_\pi = \bigcup_i (F(a_i),C(a_i))$
 - If Φ supports Φ_π then π is applicable to Φ
 - Result is a set of chronicles
 $\gamma(\Phi,\pi) = \{\Phi \cup \phi \mid \phi \in \theta(\Phi_\pi/\Phi)\}$

- Example:
 - Suppose Φ asserts that at time t_0, robots r_1 and r_2 are at adjacent locations loc_1 and loc_2
 - Let a_1 and a_2 be as shown
 - Then Φ supports $\{a_1, a_2\}$ with
 $l_1 = \text{loc}_1$, $l_2 = \text{loc}_2$, $l'_1 = \text{loc}_2$, $l'_2 = \text{loc}_1$,
 $t_0 < t_s < t_1 < t'_2$, $t_0 < t'_s < t'_1 < t_2$
Domains and Problems

- **Temporal planning domain**: a pair $D = (\Lambda_{\Phi}, O)$
 - $O = \{\text{all chronicle planning operators in the domain}\}$
 - $\Lambda_{\Phi} = \{\text{all chronicles allowed in the domain}\}$

- **Temporal planning problem on D**: a triple $P = (D, \Phi_0, \Phi_g)$
 - D is the domain
 - Φ_0 and Φ_g are initial chronicle and goal chronicle
 - O is the set of chronicle planning operators

- **Statement of the problem P**: a triple $P = (O, \Phi_0, \Phi_g)$
 - O is the set of chronicle planning operators
 - Φ_0 and Φ_g are initial chronicle and goal chronicle

- **Solution plan**: a set of actions $\pi = \{a_1, \ldots, a_n\}$ such that at least one chronicle in $\gamma(\Phi_0, \pi)$ entails Φ_g
As in plan-space planning, there are two kinds of flaws:

- **Open goal**: a \(tqe \) that isn’t yet enabled
- **Threat**: an enabler that hasn’t yet been incorporated into \(\Phi \)

\[
\mathcal{CP}(\Phi, G, \mathcal{K}, \pi)
\]

if \(G = \mathcal{K} = \emptyset \) then return(\(\pi \))

perform the two following steps in any order

if \(G \neq \emptyset \) then do

select any \(\alpha \in G \)

if \(\theta(\alpha/\Phi) \neq \emptyset \) then return(\(\mathcal{CP}(\Phi, G - \{\alpha\}, \mathcal{K} \cup \{\theta(\alpha/\Phi)\}, \pi) \))

else do

\[
\text{relevant} \leftarrow \{a \mid a \text{ contains a support for } \alpha\}
\]

if \(\text{relevant} = \emptyset \) then return(failure)

nondeterministically choose \(a \in \text{relevant} \)

return(\(\mathcal{CP}(\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \pi \cup \{a\}) \))

if \(\mathcal{K} \neq \emptyset \) then do

select any \(C \in \mathcal{K} \)

\[
\text{threat-resolvers} \leftarrow \{\phi \in C \mid \phi \text{ consistent with } \Phi\}
\]

if \(\text{threat-resolvers} = \emptyset \) then return(failure)

nondeterministically choose \(\phi \in \text{threat-resolvers} \)

return(\(\mathcal{CP}(\Phi \cup \phi, G, \mathcal{K} - C, \pi) \))
Resolving Open Goals

- Let $\alpha \in G$ be an open goal

- Case 1: Φ supports α
 - Resolver: any enabler for α that’s consistent with Φ
 - Refinement:
 - $G \leftarrow G - \{\alpha\}$
 - $K \leftarrow K \cup \theta(\alpha/\Phi)$

- Case 2: Φ doesn’t support α
 - Resolver: an action $a = (F(a), C(a))$ that supports α
 - We don’t yet require a to be supported by Φ
 - Refinement:
 - $\pi \leftarrow \pi \cup \{a\}$
 - $\Phi \leftarrow \Phi \cup (F(a), C(a))$
 - $G \leftarrow G \cup F(a)$ Don’t remove α yet: we haven’t chosen an enabler for it
 - We’ll choose one in a later call to CP, in Case 1 above
 - $K \leftarrow K \cup \theta(a/\Phi)$ put a’s set of enablers into K
Resolving Threats

- **Threat**: each enabler in K that isn’t yet entailed by Φ is threatened
 - For each C in K, we need only one of the enablers in C
 - They’re alternative ways to achieve the same thing
 - “Threat” means something different here than in PSP, because we won’t try to entail *all* of the enablers
 - Just the one we select
 - Resolver: any enabler ϕ in C that is consistent with Φ
 - Refinement:
 - $K \leftarrow K - C$
 - $\Phi \leftarrow \Phi \cup \phi$
Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup \{\alpha_1, \alpha_2\}, \{\} \}$, where α_1 and α_2 are the same as before:

- $\alpha_1 = rloc(r1)@t: (\text{routes, loc3})$
- $\alpha_2 = rloc(r1)@[t', t'']:\text{loc3}$

As we saw earlier, we can support $\{\alpha_1, \alpha_2\}$ from Φ_0

- Thus CP won’t add any actions
- It will return a modified version of Φ_0 that includes the enablers for $\{\alpha_1, \alpha_2\}$
Modified Example

Let Φ_0 be as shown, and $\Phi_g = \Phi_0 \cup \{\{\alpha_1,\alpha_2\},\{\}\}$, where α_1 and α_2 are the same as before:

- $\alpha_1 = \text{rloc}(r1)@t:\text{(routes, loc3)}$
- $\alpha_2 = \text{rloc}(r1)@[t',t'']:\text{loc3}$

This time, CP will need to insert an action $\text{move}(t_s, t_e, t_1, t_2, r1, \text{loc4, loc3})$

with $t_5 < t_s < t_1 < t_2 < t_e$