CMSC 330: Organization of Programming Languages

Lambda Calculus
Programming Language Features

- Many features exist simply for convenience
 - Multi-argument functions
 - Use currying or tuples
 - Loops
 - Use recursion
 - Side effects
 - Use functional programming

- So what language features are really needed?
Turing Completeness

- Computational system that can
 - Simulate a Turing machine
 - Compute every Turing-computable function

- A programming language is **Turing complete** if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language

- Most powerful programming language possible
 - Since Turing machine is most powerful automaton
Programming Language Theory

- Come up with a “core” language
 - That’s as small as possible
 - But still Turing complete

- Helps illustrate important
 - Language features
 - Algorithms

- One solution
 - Lambda calculus
Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 (born in Washington DC!)
- Formal system
 - Designed to investigate functions & recursion
 - For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell…
Lambda Expressions

- A lambda calculus expression is defined as

\[e ::= x \quad \text{variable} \]
\[\mid \lambda x.e \quad \text{function} \]
\[\mid e e \quad \text{function application} \]

- \(\lambda x.e \) is like \((\text{fun} \ x \rightarrow e)\) in OCaml

- That’s it! Nothing but higher-order functions
Three Conveniences

- Syntactic sugar for local declarations
 - let x = e1 in e2 is short for (λx.e2) e1

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx. λy.x y is same as λx.(λy.(x y))

- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml
Lambda Calculus Semantics

- All we’ve got are functions
 - So all we can do is call them
- To evaluate $(\lambda x. e_1) \ e_2$
 - Evaluate e_1 with x replaced by e_2
- This application is called beta-reduction
 - $(\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]$
 - $e_1[x:=e_2]$ is e_1 with occurrences of x replaced by e_2
 - This operation is called substitution
 - Slightly different than the environments we saw for Ocaml
 - Do syntactic substitutions to replace formals with actuals
 - Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
Beta Reduction Example

- \((\lambda x.\lambda z.x \ z) \ y\)
 - \(\rightarrow (\lambda x.(\lambda z.(x \ z))) \ y\) // since \(\lambda\) extends to right
 - \(\rightarrow (\lambda x.(\lambda z.(x \ z))) \ y\) // apply \((\lambda x.e1) \ e2 \rightarrow e1[x:=e2]\)
 - // where \(e1 = \lambda z.(x \ z), \ e2 = y\)
 - \(\rightarrow \lambda z.(y \ z)\) // final result

- Equivalent OCaml code
 - \((\text{fun } x -> (\text{fun } z -> (x \ z))) \ y \rightarrow \text{fun } z -> (y \ z)\)
Lambda Calculus Examples

- \((\lambda x. x) \, z \rightarrow z\)
- \((\lambda x. y) \, z \rightarrow y\)
- \((\lambda x. x \, y) \, z \rightarrow z \, y\)
 - A function that applies its argument to \(y\)
Lambda Calculus Examples (cont.)

- \((\lambda x. x \ y) \ (\lambda z. z) \rightarrow (\lambda z. z) \ y \rightarrow y\)

- \((\lambda x. \lambda y. x \ y) \ z \rightarrow \lambda y. z \ y\)
 - A curried function of two arguments
 - Applies its first argument to its second

- \((\lambda x. \lambda y. x \ y) \ (\lambda z. z) \ z \ x \rightarrow (\lambda y. (\lambda z. z) y) \ x \rightarrow (\lambda z. z) x \rightarrow xx\)
Defining Substitution

Use recursion on structure of terms!

- \(x[x:=e] = e \) // Replace \(x \) by \(e \)
- \(y[x:=e] = y \) // \(y \) is different than \(x \), so no effect
- \((e_1 \ e_2)[x:=e] = (e_1[x:=e]) \ (e_2[x:=e])\)
 // Substitute both parts of application
- \((\lambda x.e')[x:=e] = \lambda x.e'\)
 - In \(\lambda x.e' \), the \(x \) is a parameter, and thus a local variable that is different from other \(x' \)'s.
 - So the substitution has no effect in this case, since the \(x \) being substituted for is different from the parameter \(x \) that is in \(e' \)!
- \((\lambda y.e')[x:=e] = ?\)
 - The parameter \(y \) does not share the same name as \(x \), the variable being substituted for
 - Is \(\lambda y.(e'[x:=e]) \) correct?
Lambda calculus uses static scoping

Consider the following

• $$(\lambda x.x (\lambda x.x)) \ z \rightarrow ?$$
 - The rightmost “x” refers to the second binding

• This is a function that
 - Takes its argument and applies it to the identity function

This function is “the same” as $$(\lambda x.x (\lambda y.y))$$

• Renaming bound variables consistently is allowed
 - This is called alpha-renaming or alpha conversion

• Ex. $$\lambda x.x = \lambda y.y = \lambda z.z$$
 $$\lambda y.\lambda x.y = \lambda z.\lambda x.z$$
Static Scoping (cont.)

- How about the following?
 - \((\lambda x. \lambda y. x \ y) \ y \rightarrow ?\)
 - When we replace \(y\) inside, we don’t want it to be captured by the inner binding of \(y\), as this violates static scoping
 - I.e., \((\lambda x. \lambda y. x \ y) \ y \neq \lambda y. y \ y\)

- Solution
 - \((\lambda x. \lambda y. x \ y)\) is “the same” as \((\lambda x. \lambda z. x \ z)\)
 - Due to alpha conversion
 - So change \((\lambda x. \lambda y. x \ y) \ y\) to \((\lambda x. \lambda z. x \ z) \ y\) first
 - Now \((\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z\)
Completing the Definition of Substitution

- Recall: we need to define $\lambda y.e'[x:=e]$
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e. (Such a w is called fresh.)
 - Replace all occurrences of y in e' by w.
 - Then replace all occurrences of x in e' by e!

- Formally:
 $$(\lambda y.e'[x:=e] = \lambda w.((e'[y:=w]) [x:=e]) \text{ (}w\text{ is fresh})$$
Beta-Reduction, Again

Whenever we do a step of beta reduction

- \((\lambda x. e_1) \ e_2 \rightarrow e_1[x:=e_2]\)
- We must alpha-convert variables as necessary
- Usually performed implicitly (w/o showing conversion)

Examples

- \((\lambda x. \lambda y. x \ y) \ y = (\lambda x. \lambda z. x \ z) \ y \rightarrow \lambda z. y \ z \quad // \ y \rightarrow z\)
- \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda y. y \ (\lambda x. x)) \ z \rightarrow z \ (\lambda x. x) \quad // \ x \rightarrow y\)
- \((\lambda x. x \ (\lambda x. x)) \ z = (\lambda x. x \ (\lambda y. y)) \ z \rightarrow z \ (\lambda y. y) \quad // \ x \rightarrow y\)
Encodings

- The lambda calculus is Turing complete

- Means we can encode any computation we want
 - If we’re sufficiently clever...

- Examples
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 -Looping
Booleans

- Church’s encoding of mathematical logic
 - true = \(\lambda x.\lambda y.x \)
 - false = \(\lambda x.\lambda y.y \)
 - if a then b else c
 - Defined to be the \(\lambda \) expression: \(a \ b \ c \)

- Examples
 - if true then b else c \(\rightarrow (\lambda x.\lambda y.x) \ b \ c \rightarrow (\lambda y.b) \ c \rightarrow b \)
 - if false then b else c \(\rightarrow (\lambda x.\lambda y.y) \ b \ c \rightarrow (\lambda y.y) \ c \rightarrow c \)
Booleans (cont.)

- Other Boolean operations
 - not = \(\lambda x.((x \text{ false}) \text{ true}) \)
 - not \(x \) = if \(x \) then false else true!
 - not true \(\to (\lambda x.(x \text{ false}) \text{ true}) \text{ true} \to ((\text{true false}) \text{ true}) \to \text{false}
 - and = \(\lambda x.\lambda y.((x \ y) \text{ false}) \)
 - and \(x \ y \) = if \(x \) then \(y \) else false
 - or = \(\lambda x.\lambda y.((x \text{ true}) \ y) \)
 - or \(x \ y \) = if \(x \) then \text{true} else \(y \)

- Given these operations
 - Can build up a logical inference system
Pairs

- Encoding of a pair \(a, b \)
 - \((a,b) = \lambda x.\text{if } x \text{ then } a \text{ else } b \)
 - \(\text{fst} = \lambda f.f \text{ true} \)
 - \(\text{snd} = \lambda f.f \text{ false} \)

- Examples
 - \(\text{fst} (a,b) = (\lambda f.f \text{ true}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow\)
 \((\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ true } \rightarrow\)
 \(\text{if true then } a \text{ else } b \rightarrow a\)
 - \(\text{snd} (a,b) = (\lambda f.f \text{ false}) (\lambda x.\text{if } x \text{ then } a \text{ else } b) \rightarrow\)
 \((\lambda x.\text{if } x \text{ then } a \text{ else } b) \text{ false } \rightarrow\)
 \(\text{if false then } a \text{ else } b \rightarrow b\)
Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f. \lambda y. y$
 - $1 = \lambda f. \lambda y. f\ y$
 - $2 = \lambda f. \lambda y. f\ (f\ y)$
 - $3 = \lambda f. \lambda y. f\ (f\ (f\ y))$
 - i.e., $n = \lambda f. \lambda y. \text{<apply } f\ n\ \text{times to } y>\$
 - Formally: $n+1 = \lambda f. \lambda y. f\ (n\ f\ y)$

(Alonzo Church, of course)
Operations On Church Numerals

- **Successor**
 - \(\text{succ} = \lambda z. \lambda f. \lambda y. f (z f y) \)
 - \(0 = \lambda f. \lambda y. y \)
 - \(1 = \lambda f. \lambda y. f y \)

- **Example**
 - \(\text{succ} \ 0 = \)
 - \((\lambda z. \lambda f. \lambda y. f (z f y)) (\lambda f. \lambda y. y) \rightarrow \)
 - \(\lambda f. \lambda y. f ((\lambda f. \lambda y. y) f y) \rightarrow \)
 - \(\lambda f. \lambda y. f ((\lambda y. y) y) \rightarrow \) Since \((\lambda x. y) z \rightarrow y \)
 - \(\lambda f. \lambda y. f y \)
 - \(= 1 \)
Operations On Church Numerals (cont.)

- **IsZero?**
 - \(\text{iszero} = \lambda z. z (\lambda y. \text{false}) \text{ true} \)
 - This is equivalent to \(\lambda z. ((z (\lambda y. \text{false})) \text{ true}) \)

- **Example**
 - \(\text{iszero 0} = \)
 \((\lambda z. z (\lambda y. \text{false}) \text{ true}) (\lambda f. \lambda y. y) \rightarrow \)
 \((\lambda f. \lambda y. y) (\lambda y. \text{false}) \text{ true} \rightarrow \)
 \((\lambda y. y) \text{ true} \rightarrow \) Since \((\lambda x. y) z \rightarrow y \)

- \(0 = \lambda f. \lambda y. y \)
Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations

Addition
- \(M + N = \lambda x. \lambda y. (M x)((N x) y) \)
 - Equivalently: \(+ = \lambda M. \lambda N. \lambda x. \lambda y. (M x)((N x) y) \)
 - In prefix notation \((+ M N)\)

Multiplication
- \(M * N = \lambda x. (M (N x)) \)
 - Equivalently: \(* = \lambda M. \lambda N. \lambda x. (M (N x)) \)
 - In prefix notation \((* M N)\)
Arithmetic (cont.)

- Prove $1+1 = 2$
 - $1+1 = \lambda x.\lambda y. (1 \times)((1 \times) y) =$
 - $\lambda x.\lambda y.((\lambda x.\lambda y.x y) x)(((\lambda x.\lambda y.x y) x) y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x y)(((\lambda x.\lambda y.x y) x) y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x y)((\lambda y.x y) y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.x y) y) \rightarrow$
 - $\lambda x.\lambda y.x (x y) = 2$ Many implicit alpha conversions

- With these definitions
 - Can build a theory of arithmetic

$1 = \lambda f.\lambda y.f y$
$2 = \lambda f.\lambda y.f (f y)$
Looping

- Define $D = \lambda x. x x$, then
 - $D D = (\lambda x. x x) (\lambda x. x x) \rightarrow (\lambda x. x x) (\lambda x. x x) = D D$

- So $D D$ is an infinite loop
 - In general, self application is how we get looping
The Fixpoint Combinator

\(Y = \lambda f. (\lambda x.f (x x)) (\lambda x.f (x x)) \)

- Then
 \[Y \, F = \]

 \[(\lambda f. (\lambda x.f (x x)) (\lambda x.f (x x))) \, F \rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x))) \]

 \[= F (Y \, F) \]

- \(Y \, F \) is a *fixed point* (aka “fixpoint”) of \(F \)

- Thus \(Y \, F = F (Y \, F) = F (F (Y \, F)) = \ldots \)
 - We can use \(Y \) to achieve recursion for \(F \)
Example

\[\text{fact} = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f \ (n-1)) \]

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - We’ll use Y to make this recursively call fact

\[(Y \ \text{fact}) \ 1 = (\text{fact} \ (Y \ \text{fact})) \ 1 \]
\[\rightarrow \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times ((Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \times ((Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \times (\text{fact} \ (Y \ \text{fact}) \ 0) \]
\[\rightarrow 1 \times (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \times ((Y \ \text{fact}) \ (-1))) \]
\[\rightarrow 1 \times 1 \rightarrow 1 \]
Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in “real” language
 - Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 → thousands of function calls)
 - Pretty large (10000 + 1 → hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives
The Need For Types

- Consider the *untyped* lambda calculus
 - `false = \lambda x.\lambda y.y`
 - `0 = \lambda x.\lambda y.y`
- Since everything is encoded as a function...
 - We can easily misuse terms…
 - `false 0 \rightarrow \lambda y.y`
 - `if 0 then ...`
 …because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words
Simply-Typed Lambda Calculus

- $e ::= n \mid x \mid \lambda x:t.e \mid e\ e$
 - Added integers n as primitives
 - Need at least two distinct types (integer & function)…
 - …to have type errors
 - Functions now include the type of their argument
Simply-Typed Lambda Calculus (cont.)

- \(t ::= \text{int} \mid t \rightarrow t \)
 - \(\text{int} \) is the type of integers
 - \(t_1 \rightarrow t_2 \) is the type of a function
 - That takes arguments of type \(t_1 \) and returns result of type \(t_2 \)
 - \(t_1 \) is the domain and \(t_2 \) is the range
 - Notice this is a recursive definition
 - So we can give types to higher-order functions
Summary

- Lambda calculus shows issues with
 - Scoping
 - Higher-order functions
 - Types

- Useful for understanding how languages work