Multiple-choice Problems:

Problem 1. Which of the following is true of functions \(f(n) = 100n + \log n \) and \(g(n) = n + (\log n)^2 \)?
 a) \(f(n) = O(g(n)) \) b) \(f(n) = \Omega(g(n)) \) c) \(f(n) = \Theta(g(n)) \)
 d) All of the above e) None of the above

Problem 2. Which of the following is true of functions \(f(n) = n2^n \) and \(g(n) = 3^n \)?
 a) \(f(n) = O(g(n)) \) b) \(f(n) = \Omega(g(n)) \) c) \(f(n) = \Theta(g(n)) \)
 d) All of the above e) None of the above

Problem 3. Which of the following statements are true of collision resolution with linear probing for universal hash function \(h \) with constant load factor \(\alpha = \frac{n}{m} \) where \(n \) is the number of items to hash, and \(m \) is the size of the hash table?
 a) Operations Insert and Search can take average \(O(1) \) time.
 b) The Delete operation may not take average \(O(1) \) time.
 c) For all keys \(x \) and \(y \), where \(x \neq y \), \(\Pr[h(x) = h(y)] \leq \frac{1}{m} \)
 d) All of (a),(b) and (c) e) None of (a), (b) and (c)

Problem 4. Using which of the following algorithm you can check whether a given graph is connected or not?
 a) DFS b) BFS c) Dijkstra
 d) (a) and (b) e) All of the above

Problem 5. For dense graphs with \(\Omega(n^3) \) weighted edges what is the best running time for an all-pairs shortest-paths algorithm that you have seen in the class?
 a) \(O(n^2 \log n) \) b) \(O(n^3) \) c) \(O(n) \) d) \(O(n^3 \log n) \) e) \(O(n^3) \)

Problem 6. Let \(G \) be a Directed Acyclic Graph (DAG) with 22 vertices. What is the maximum possible number of vertices with both in-degree and out-degree one in \(G \)?
 a) 1 b) 2 c) 20
 d) 21 e) 22
Problem 7. Consider the graph below which is represented by its adjacency matrix A. Here $A[i,j]$ is the weight of the edge from vertex i to vertex j. If we run Floyd-Warshall algorithm on this graph what would be the sum of the lengths of the shortest paths of the pairs (1,5), (4,5), (5,1), and (3,1)?

\[
\begin{bmatrix}
0 & 5 & 9 & 4 & 1 & 6 \\
5 & 0 & 5 & 1 & 8 & 6 \\
9 & 5 & 0 & 7 & 5 & 3 \\
4 & 1 & 7 & 0 & 9 & 9 \\
1 & 8 & 5 & 9 & 0 & 4 \\
6 & 6 & 3 & 9 & 4 & 0
\end{bmatrix}
\]

a) 10

b) 11

c) 12

d) 13

e) 14

Problem 8. What is the length of the Minimum Spanning Tree (MST) in the graph of Problem 7?

a) 8

b) 9

c) 10

d) 11

e) 13
Regular Problems (you should always PROVE THE CORRECTNESS of your solutions):

Problem 9. Given a sequence of (not necessary positive) integers $x_1, x_2, ..., x_n$ find a subsequence $x_i, x_{i+1}, ..., x_j$ (of consecutive elements) such that the sum of the numbers in it is even and maximum over all subsequences of consecutive elements with an even sum of elements. For example if the sequence is 5, −1, 4, −10, 3, 3, 3, the maximum even consecutive subsequence is 5, −1, 4. The running time of your algorithm should be in $O(n)$.

We say a subsequence of consecutive elements is “even” if the sum of elements in it is even, otherwise we say it is “odd”. Define E_i as the maximum sum of even subsequences ending at i. Similarly, define O_i as the maximum sum of odd subsequences ending at i. Clearly the answer to the problem is $\max_i E_i$. We only need to show how we can compute E_i’s and O_i’s in $O(n)$. One can easily show that the following recursive formula holds, which would directly give us the desired algorithm: E_1 and O_1 are easily computable. For $i \geq 2$:

- If x_i is even => $E_i = \max\{0, E_{i-1} + x_i\}$ and $O_i = O_{i-1} + x_i$
- If x_i is odd => $E_i = \max\{0, O_{i-1} + x_i\}$ and $O_i = E_{i-1} + x_i$
Problem 10. Given 1 US dollar, the set of currencies, and exchange rates between each pair of currencies, design an algorithm which decides whether we can change our 1 US dollar to more than 1 US dollar by just exchanging our money. Note that if we have two currencies u and v with exchange rate r from u to v, it means that x units of money in u are worth r x units of money in v for any x ∈ ℝ. (Hint: use the problem of finding a negative cycle in a graph).

We make a weighted directed graph G such that G has a negative cycle iff we can change our 1 US dollar to more than 1 US dollar. We put a vertex u in G for each currency u. For every exchange ratio r from currency u to currency v, we put a directed edge of weight −ln(r) from u to v and we put a directed edge of weight −ln(1/r) from v to u.

Now consider a cycle in exchanging the currencies. If the cycle is x₁, x₂, ..., xₖ, x₁ and we have 1 unit of x₁, then we will have r₁ × r₂ × ... × rₖ units of x₁ by exchanging our money from x₁ to x₂, then from x₂ to x₃ and so on until we change our money back to x₁ from xₖ (rᵢ is the exchange ratio from xᵢ to xᵢ₊₁).

On the other hand, the length of this cycle in graph G, is −ln(r₁) − ln(r₂) − ... − ln(rₖ) = −ln(r₁ × r₂ × ... × rₖ). Finally, we know that r₁ × r₂ × ... × rₖ > 1 if and only if −ln(r₁ × r₂ × ... × rₖ) < 0 and thus we can change our money from 1 dollar to more than one dollar iff G has a negative cycle.
Problem 11. An **independent set** in an undirected graph G is a set S of vertices such that between any two vertices of S there is no edge in G. Given an undirected graph G and an integer k, the **independent set problem** asks whether there is an independent set of size at least k in graph G. Prove the clique problem is polynomially reducible to the independent set problem.

Given instance of CLIQUE $G = (V, E)$, construct graph $\tilde{G} = (V, \tilde{E})$. There is a clique of size $\geq k$ in G iff there is an I.S. of size $\geq k$ in \tilde{G}.
Problem 12. Explain Dijkstra's algorithm in details and prove its correctness.

Look at Section 7.4 of the book.