
CMSC 425 Dave Mount

CMSC 425: Lecture 20
Artificial Intelligence for Games: Decision Making

Tuesday, Apr 23, 2013

Reading: The material on Behavior Trees has been taken from a nice lecture by AlexChampandard, “Be-
havior Trees for Next-Gen Game AI,” which appears on aigamedev.com (visit: http://aigamedev.com/insider/-
presentations/behavior-trees/).

Decision Making: So far, we have discussed how to design AI systems for simple path planning. Path
planning is a relatively well defined problem. Most application of AI in game programming is sig-
nificantly more involved. In particular, we wish to consider ways to model interesting non-player
characters (NPCs).

Designing general purpose AI systems that are capable of modeling interesting behaviors is a difficult
task. On the one hand, we would our AI system to be general enough to provide a game designer the
ability to specify the subtle nuances that make a character interesting. On the other hand we would
like the AI system to be easy to use and powerful enough that relatively simple behaviors can be
designed with ease. It would be nice to have a library of different behaviors and different mechanisms
for combining these bahaviors in intersting ways.

Today we will discuss a number of different methods, ranging from fairlylimited to more complex.
In particular, we will focus on three different approaches, ranging from simple to more sophisticated.

• Rule-based systems

• Finite state machines

• Behavior trees

Rule-based Systms: The very first computer games used rule-based systems to control the behaviors of the
NPCS. Arule-based systemis one that stores no (or very little) state information, and the behavior of
an NPC is a simple function of the present conditions it finds itself in.

As an example, consider planning the motion of one of the ghosts in the gamePac-Man.1 Let’s ignore
for now the fact that ghosts have two states, depending on whether they are chaising the Pac-Man or
they are being chased. Even when they are chasing the Pac-Man, ghosts alternate between two states,
depending on whether they are wandering or chasing. Let’s consider asimple example of how to use
a rule-based system to define wandering behavior (see Fig. 1). This simplesystem prefers to go ahead
whenever possible, and if the way is blocked it selects (in order of decreasing preference) turning
right, turning left, and reversing.

Of course, this is too simplistic to be useable in a game, but it illustrates some of the features of a
ruled-based system. It is easy to implement (just a look-up table), easy to modify, and easy even for
non-programmers to understand. There a number of ways that one couldenhance this simple idea.
For example, rather than just having a single action for a given set of events, there may be a number of
possibilities and randomization is used to select the next option (perhaps with weighted probabilities
to favor some actions over others).

1Our description is not accurate. There are resources on the Web that provide detailed descriptions of the Pac-
Man ghost behaviors. For example, seehttp://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior and
http://donhodges.com/pacman pinky explanation.htm.

Lecture 20 1 Spring 2013



CMSC 425 Dave Mount

Ahead Right Left Action

Open – – Go ahead
Blocked Open – Turn right
Blocked Blocked Open Turn left
Blocked Blocked Blocked Turn around

Fig. 1: A (ridiculously) simple wandering behavior for a ghost in Pac-Man.

Finite State Machines: The next step up in complexity from a rule-based system is to add a notion ofstate
to add complexity to a character’s behavior. For example, a character may behave more aggressively
when it is healthy and less aggressively when it is injured. As another example, a designer may
wish to have a character transition between various states (patrolling, chasing, fighting, retreating)
in sequence or when triggered by game events. In each state, the characters behavior may be quite
different.

A finite state machine(FSM) can be modeled as a directed graph, where each node of the graph
corresponds to a state, and each directed edge corresponds to a event, that triggers a change of state
and optionally some associated action. The associated actions may include things like starting an
animation, playing a sound, or modifying the current game state.

As an example, consider the programming of an enemy combatant “bot” NPC in afirst-person shooter
that seeks the player’s character and engages it in combat. Suppose that as the designer you decide to
implement the following type of behavior:

• If you dont see an enemy, wander randomly

• When you see enemy, attack him

• When hear an enemy, chase him

• On dying, re-spawn

An example of a possible implementation of this using an FSM is shown in Fig. 3(a).For example,
suppose that we are currently in theWanderstate. If we see our enemy (that is, the player) we
transition to theAttack state. If we hear a sound, we transition to theChasestate. (This would
presumably be followed by querying the game database to determine where thesound came from and
the AI system to compute a path.) If we die, we jump to theSpawnstate, where we presumably wait
until we have been revived and exit this state. Note that the “!” indicates that the specified event has
not occurred (or that the specified condition is not satisfied).

FSMs are a popular method of defining behavior in games. The principal reasons that they are liked is
that they are easy to implement, easy to design (if they are not too big), and they are easy to interpret.
For example, based on the graphical layout of our FSM we can observeone interesting anomaly,
there is no transition fromAttackto Chase? Was this intentional? To remedy this, we could create an
additional state, calledAttack-with-sound-heard. While we are attacking, if we hear a sound, we could
transition to this state. When we are done with the attack, if we are in this new state,we transition
immediately to theChasestate.

Lecture 20 2 Spring 2013



CMSC 425 Dave Mount

E

!E

S

D

S

D

!E

D

S

!S

E

D

Attack

E, !D

S, E, !D

D

!E, !D, !S

Wander Chase

Spawn

Events:

E: Enemy seen

S: Sound heard

D: Die

Fig. 2: Implementing an enemy combatant NPC for a FPS game.

How are FSMs implemented? Basically, they can be implemented using a two-dimensional array,
where the row index is the current state and the column index (or indices in general) correspond to the
events that may trigger a transition.

Note that the FSM we have showed isdeterministic, meaning that there is only a single transition that
can be applied at any time. More variation can be introduced by allowing multiple transitions per
event, and then using randomization to select among them (again, possibly withweights so that some
transitions are more likely than others).

The principal problem with FSMs is that the number of states canexplodeas the designer dreams
up more complex behavior, thus requiring more states, more events, and hence the need to consider
a potentially quadratic number of mappings from all possible states to all possible events. For ex-
ample, suppose that you wanted to model multiple conditions simultaneously. A character might
behealthy/injured, wandering/chasing/attacking, aggressive/defensive/neutral. If any combination of
these qualities is possible, then we would require2 ·3 ·3 = 18 distinct states. This would also result in
a number of repeated transitions. (For example, all 9 of the states in which thecharacter is “healthy”
would need to provide transitions to the corresponding “injured” states if something bad happens to
us. Requiring this much redundancy can lead to errors, since a designermay update some of the
transitions, but not the others.)

Hierarchical FSMs: One way to avoid the explosion of states and events is to design the FSM in a hier-
archical manner. First, there are a number of high-level states, corresponding to very broad contexts
of the character’s behavior. Then within each high-level state, we couldhave many sub-states, which
would be used for modeling more refined behaviors within this state. The resulting system is called
a hierarchical finite state machine(HFSM). This could be implemented, for example, by storing the
state on a stack, where the highest-level state descriptor is pushed first, then successively more local
states.

Lecture 20 3 Spring 2013



CMSC 425 Dave Mount

Returning to our fighting bot example, each of the major states,Wander, Attack, Chase, andSpawn,
could be further subdivided into lower level states. For example, we coulddesign different types of
chasing behavior (chase on foot, chase while riding a unicyle, chase while flying a hovercraft).

The process of looking up state transitions would proceed hierarchically as well. First, we would
check whether the lowest level sub-state has any transition for handling the given event. If not, we
could check its parent state in the stack, and so on, until we find a level of the FSM hierarchy where
this event is to be handled.

The advantage of this hierarchical approach is that it naturally adds modularity to the design process.
Because the number of local sub-states is likely to be fairly small, it simplifies the design of the FSM.
In particular, we can store even a huge number of states because each sub-state level need only focus
on the relatively few events that can cause transitions at this level.

Other Approaches to Hierarchical Decision Making: A good general, scalable approach is to design the
AI decision systemhierarchically. There are three classical methods for achieving a hierarchical AI
structure:

Programming systems: Programming and scripting systems are very powerful (Turing complete).
They are very good at describing sequential, conditional, and repetitivebehaviors, since these
constructs are common to all programming languages. The downside is that they are so general
that it is hard to reuse components in other games or to compose components to form new
behaviors.

Hierarchical Finite-State Machines (HFSM): As we have seen, these are easy to design for mod-
erately sized systems. It is easy to generate a bunch of states and then consider the conditions
under which one state leads to another. They have a nice modular structure, which makes it
possible to copy FSMs from one game to another. However, FSMs and HFSMs can be clunky to
deal with when designing “procedural” behaviors (dox, theny, then repeatz 20 times), which
are more easily handled in a programming/scripting system.

Hierarchical Planners: AI planning systems are software systems that are used for searching among
a complex state of possible actions to determine the best course of action. An example (which
we will not discuss) is called ahierarchical task network(HTN). Planning-based systems are
very powerful, and can be very useful when dealing with complex decision making. Because
the planning process can take a lot of computational resources, HTN software systems tend to
be rather slow. Also they do not adapt well to highly dynamic contexts, sinceany change in
the system may require that the (time-consuming) planner be re-run from scratch. Planners are
often overkill for many of the simple decisions that need to be made in typical games.

Behavior Trees: The question that this raises is whether there is a system that combines the strengths of
these various systems. We would like a system that is more general the FSMs,more structured than
programs, and lighter weight than planners. Behavior trees were developed by Geoff Dromey in the
mid-2000s in the field of software engineering, which provides a modular way to define software in
terms of actions and preconditions. They were first used in Halo 2 and were adopted by a number of
other games such as Spore.

Following Alex Champandard’s example, let us consider the modeling of aguard dogin an FPS game.
The guard dog’s range of behaviors can be defined hierarchically. At the topmost level, the dog has

Lecture 20 4 Spring 2013



CMSC 425 Dave Mount

behaviors for major tasks, such aspatrolling, investigating, andattacking(see Fig. 3(a)). Each of these
high-level behaviors could then be broken down further into lower-level behaviors. For example, the
patrol task may include a subtask formoving. The investigate task might include a subtask forlooking
around, and the attack task may include a subtask forbite (ouch!).

patrol attack

move bite

investigate

look around

guard dog:

Fig. 3: Sample hierarchical structure of a guard-dog’s behavior.

The leaves of the tree are where the AI system interacts with the game state. Leaves provide a way to
gather information from the system throughconditions, and a way to affect the progress of the game
throughactions. In the case of our guard dog, conditions might involve issues such as thedog’s state
(is the dog hungry or injured) or geometric queries (is there another dog nearby, and is there a line of
sight to this dog?). Conditions areread-only. Actions make changes to the world state. This might
involve performing an animation, playing a sound, picking up an object, or biting someone (which
would presumably alter this other object’s state). Conditions can be thought of asfilters that indicate
which actions are to be performed.

A taskis a piece of code that models a latent computation. A task consists of a collectionconditions
that determine when the task is enabled andactions, which encode the execution of the task. Tasks
can end either insuccessor failure.

Composing Tasks: Composite tasksprovide a mechanism for composing a number of different tasks.
There are two basic types of composite tasks, which form natural complements.

Sequences: A sequence task performs a series of tasks sequentially, one after the other (see Fig. 4(a)).
As each child in the sequence succeeds, we proceed to the next one. Whenever a child task fails,
we terminate the sequence and bail out (see Fig. 4(b)). If all succeed,the sequence returns
success.

A B C D

evaluate sequentially

A B C D

(a) (b)
ok ok fail

fail!

Fig. 4: Sequence: (a) structure and (b) semantics.

Lecture 20 5 Spring 2013



CMSC 425 Dave Mount

Selector: A selector task performs at most one of a collection of child tasks. A selectorstarts by
selecting the first of its child tasks and attempts to execute it. If the child succeeds, then the
selector terminates successfully. If the child fails, then it attempts to execute thenext child, and
so on, until one succeeds (see Fig. 5(b)). If none succeed, then theselector returns failure.

A B C D

test sequentially

A B C D

(a) (b)

ok

success!

fail fail

Fig. 5: Selector: (a) structure and (b) semantics.

Sequences and selectors provide some of the missing elements of FSMs, butthey provide the natural
structural interface offered by hierarchical finite state machines. Sequences and selectors can be
combined to achieve sophisticated combinations of behaviors. For example, abehavior might involve
a sequence of tasks, each of which is based on making a selection from a list of possible subtasks.
Thus, they provide building blocks for constructing more complex behaviors.

From a software-engineering perspective, behavior trees give a programmer a more structured context
in which to design behaviors. The behavior-tree structure forces the developer to think about the
handling of success and failure, rather than doing so in an ad hoc manner, as would be the case when
expressing behaviors using a scripting language. Note that the nodes ofthe tree, conditions and tasks,
are simply links to bits of code that execute the desired test or perform the desired action. The behavior
tree provides the structure within which to organize these modules.

Lecture 20 6 Spring 2013


