CMSC 425 Dave Mount

CMSC 425: Lecture 20

Artificial Intelligence for Games: Decision Making
Tuesday, Apr 23, 2013

Reading: The material on Behavior Trees has been taken from a nice lecture byChlexpandard, “Be-
havior Trees for Next-Gen Game Al,” which appears on aigamedev.isit fttp://aigamedev.com/insider/-
presentations/behavior-trees/).

Decision Making: So far, we have discussed how to design Al systems for simple path planRatd
planning is a relatively well defined problem. Most application of Al in gamegpmming is sig-
nificantly more involved. In particular, we wish to consider ways to model éstarg non-player
characters (NPCs).

Designing general purpose Al systems that are capable of modelingsitmigrbehaviors is a difficult
task. On the one hand, we would our Al system to be general enoughuid@ra game designer the
ability to specify the subtle nuances that make a character interesting. Oth#rehand we would
like the Al system to be easy to use and powerful enough that relativellesipglaviors can be
designed with ease. It would be nice to have a library of different ierssnd different mechanisms
for combining these bahaviors in intersting ways.

Today we will discuss a number of different methods, ranging from féimyted to more complex.
In particular, we will focus on three different approaches, rangiomfsimple to more sophisticated.

e Rule-based systems
e Finite state machines
e Behavior trees

Rule-based Systms: The very first computer games used rule-based systems to control #nédrslof the
NPCS. Arule-based systeis one that stores no (or very little) state information, and the behavior of
an NPC is a simple function of the present conditions it finds itself in.

As an example, consider planning the motion of one of the ghosts in theRgardan® Let’s ignore
for now the fact that ghosts have two states, depending on whetherrithefiasing the Pac-Man or
they are being chased. Even when they are chasing the Pac-Matsg gheshate between two states,
depending on whether they are wandering or chasing. Let’s consgiede example of how to use
a rule-based system to define wandering behavior (see Fig. 1). This siyspden prefers to go ahead
whenever possible, and if the way is blocked it selects (in order of dsicrg preference) turning
right, turning left, and reversing.

Of course, this is too simplistic to be useable in a game, but it illustrates some afaheds of a
ruled-based system. It is easy to implement (just a look-up table), easy ibynawdl easy even for
non-programmers to understand. There a number of ways that oneesthadce this simple idea.
For example, rather than just having a single action for a given set nfe\vhere may be a number of
possibilities and randomization is used to select the next option (perhaps vigthtegprobabilities
to favor some actions over others).

'Our description is not accurate. There are resources on the Web tiwitlep detailed descriptions of the Pac-
Man ghost behaviors. For example, d&tp://gameinternals.com/post/2072558330/understanding-pac-man-ghost-behavior and
http://[donhodges.com/pacman_pinky_explanation.htm.

Lecture 20 1 Spring 2013

CMSC 425 Dave Mount

| Ahead [Right | Left | Action \
Open - - Go ahead
Blocked | Open - Turn right
Blocked | Blocked | Open Turn left
Blocked | Blocked | Blocked | Turn around

Fig. 1: A (ridiculously) simple wandering behavior for a ghost in Pac-Man

Finite State Machines. The next step up in complexity from a rule-based system is to add a notstatef
to add complexity to a character’s behavior. For example, a characterehaydmore aggressively
when it is healthy and less aggressively when it is injured. As anothenpea a designer may
wish to have a character transition between various states (patrollingnghfighting, retreating)
in sequence or when triggered by game events. In each state, thetelgakmhavior may be quite
different.

A finite state machingFSM) can be modeled as a directed graph, where each node of the grap
corresponds to a state, and each directed edge corresponds td,dtexemniggers a change of state
and optionally some associated action. The associated actions may includelikengtarting an
animation, playing a sound, or modifying the current game state.

As an example, consider the programming of an enemy combatant “bot” NPi€@strperson shooter
that seeks the player’s character and engages it in combat. Suppiose e designer you decide to
implement the following type of behavior:

e If you dont see an enemy, wander randomly
e When you see enemy, attack him

e When hear an enemy, chase him

e On dying, re-spawn

An example of a possible implementation of this using an FSM is shown in Fig. Béa)example,
suppose that we are currently in théanderstate. If we see our enemy (that is, the player) we
transition to theAttack state. If we hear a sound, we transition to tBleasestate. (This would
presumably be followed by querying the game database to determine whemutitecame from and
the Al system to compute a path.) If we die, we jump to &pawnstate, where we presumably wait
until we have been revived and exit this state. Note that the “!" indicateghhaspecified event has
not occurred (or that the specified condition is not satisfied).

FSMs are a popular method of defining behavior in games. The princgsims that they are liked is
that they are easy to implement, easy to design (if they are not too big), gnaréheasy to interpret.
For example, based on the graphical layout of our FSM we can obsessénteresting anomaly,
there is no transition fromttackto Chas@ Was this intentional? To remedy this, we could create an
additional state, calledttack-with-sound-heardVhile we are attacking, if we hear a sound, we could
transition to this state. When we are done with the attack, if we are in this newwtategnsition
immediately to theChasestate.

Lecture 20 2 Spring 2013

CMSC 425 Dave Mount

Events:
E: Enemy seen
S: Sound heard
D: Die

Fig. 2: Implementing an enemy combatant NPC for a FPS game.

How are FSMs implemented? Basically, they can be implemented using a two-dimareicay,
where the row index is the current state and the column index (or indicea@najgcorrespond to the
events that may trigger a transition.

Note that the FSM we have showedlisterministi¢ meaning that there is only a single transition that
can be applied at any time. More variation can be introduced by allowing multghsitions per
event, and then using randomization to select among them (again, possiblyeigthts so that some
transitions are more likely than others).

The principal problem with FSMs is that the number of statesevgriodeas the designer dreams
up more complex behavior, thus requiring more states, more events, acelthemeed to consider
a potentially quadratic number of mappings from all possible states to all possints. For ex-
ample, suppose that you wanted to model multiple conditions simultaneously. rActdramight
behealthy/injured wandering/chasing/attackingggressive/defensive/neutrfiany combination of
these qualities is possible, then we would req2irg- 3 = 18 distinct states. This would also result in
a number of repeated transitions. (For example, all 9 of the states in whichdh&cter is “healthy”
would need to provide transitions to the corresponding “injured” statesnik#iung bad happens to
us. Requiring this much redundancy can lead to errors, since a desigiyeupdate some of the
transitions, but not the others.)

Hierarchical FSMs: One way to avoid the explosion of states and events is to design the FSM in a hier
archical manner. First, there are a number of high-level states, pordisig to very broad contexts
of the character’s behavior. Then within each high-level state, we ¢@myd many sub-states, which
would be used for modeling more refined behaviors within this state. Th#ingssystem is called
a hierarchical finite state machin@HFSM). This could be implemented, for example, by storing the
state on a stack, where the highest-level state descriptor is pushed émssuitcessively more local
states.

Lecture 20 3 Spring 2013

CMSC 425 Dave Mount

Returning to our fighting bot example, each of the major stAé&sder Attack Chase andSpawn
could be further subdivided into lower level states. For example, we arsdiyn different types of
chasing behavior (chase on foot, chase while riding a unicyle, chateflying a hovercratft).

The process of looking up state transitions would proceed hierarchicallyed. First, we would
check whether the lowest level sub-state has any transition for handéngjien event. If not, we
could check its parent state in the stack, and so on, until we find a levet $13M hierarchy where
this event is to be handled.

The advantage of this hierarchical approach is that it naturally adds niitgtdethe design process.
Because the number of local sub-states is likely to be fairly small, it simplifiesetsigrof the FSM.
In particular, we can store even a huge number of states becausaubastate level need only focus
on the relatively few events that can cause transitions at this level.

Other Approachesto Hierarchical Decision Making: A good general, scalable approach is to design the
Al decision systenmierarchically. There are three classical methods for achieving a hierarchical Al
structure:

Programming systems. Programming and scripting systems are very powerful (Turing complete).
They are very good at describing sequential, conditional, and repdigivaviors, since these
constructs are common to all programming languages. The downside is that¢hso general
that it is hard to reuse components in other games or to compose componertts toefu
behaviors.

Hierarchical Finite-State Machines (HFSM): As we have seen, these are easy to design for mod-
erately sized systems. It is easy to generate a bunch of states and tkatectime conditions
under which one state leads to another. They have a nice modular stywehice makes it
possible to copy FSMs from one game to another. However, FSMs anifisiE& be clunky to
deal with when designing “procedural” behaviors (@daheny, then repeat 20 times), which
are more easily handled in a programming/scripting system.

Hierarchical Planners. Al planning systems are software systems that are used for searchingamo
a complex state of possible actions to determine the best course of actioxadple (which
we will not discuss) is called hierarchical task networkHTN). Planning-based systems are
very powerful, and can be very useful when dealing with complex decisiaking. Because
the planning process can take a lot of computational resources, HTiMasefsystems tend to
be rather slow. Also they do not adapt well to highly dynamic contexts, singechange in
the system may require that the (time-consuming) planner be re-run fratclscPlanners are
often overkill for many of the simple decisions that need to be made in typioa¢ga

Behavior Trees: The question that this raises is whether there is a system that combines tiythstref
these various systems. We would like a system that is more general the Ffekésstructured than
programs, and lighter weight than planners. Behavior trees were gedchly Geoff Dromey in the
mid-2000s in the field of software engineering, which provides a modulgrtevdefine software in
terms of actions and preconditions. They were first used in Halo 2 areladepted by a number of
other games such as Spore.

Following Alex Champandard’s example, let us consider the modelingoéed dogn an FPS game.
The guard dog’s range of behaviors can be defined hierarchicallihe®opmost level, the dog has

Lecture 20 4 Spring 2013

CMSC 425 Dave Mount

behaviors for major tasks, suchgatrolling, investigating andattacking(see Fig. 3(a)). Each of these
high-level behaviors could then be broken down further into lowertleglaviors. For example, the
patrol task may include a subtask fopving The investigate task might include a subtaskéaking
around and the attack task may include a subtaskoite (ouch!).

guard dog:

patrol investigate attack

move look around

Fig. 3: Sample hierarchical structure of a guard-dog’s behavior.

The leaves of the tree are where the Al system interacts with the game stateslpgovide a way to
gather information from the system througbnditions and a way to affect the progress of the game
throughactions In the case of our guard dog, conditions might involve issues such ae¢f®state

(is the dog hungry or injured) or geometric queries (is there another eldpy, and is there a line of
sight to this dog?). Conditions aread-only Actions make changes to the world state. This might
involve performing an animation, playing a sound, picking up an object, orgbdiiimeone (which
would presumably alter this other object’s state). Conditions can be thotigkfilters that indicate
which actions are to be performed.

A taskis a piece of code that models a latent computation. A task consists of a collectiditions
that determine when the task is enabled antions which encode the execution of the task. Tasks
can end either isucces®r failure.

Composing Tasks: Composite taskprovide a mechanism for composing a number of different tasks.
There are two basic types of composite tasks, which form natural compiemen

Sequences. A sequence task performs a series of tasks sequentially, one afteréhéseth Fig. 4(a)).
As each child in the sequence succeeds, we proceed to the next oereY¥ha child task fails,
we terminate the sequence and bail out (see Fig. 4(b)). If all suctieedequence returns
success.

(/g%\eg;ate sequentially
A B C D

(2)

Fig. 4: Sequence: (a) structure and (b) semantics.

Lecture 20 5 Spring 2013

CMSC 425 Dave Mount

Selector: A selector task performs at most one of a collection of child tasks. A selstdds by
selecting the first of its child tasks and attempts to execute it. If the child suscéeh the
selector terminates successfully. If the child fails, then it attempts to executexhehild, and
so on, until one succeeds (see Fig. 5(b)). If none succeed, therltdwor returns failure.

~._success!

(D/ C{ b \tgsequentially
A B C D A X ¢

I
(a) (b)

Fig. 5: Selector: (a) structure and (b) semantics.

Sequences and selectors provide some of the missing elements of FSk&ylqutovide the natural
structural interface offered by hierarchical finite state machines. €3egs and selectors can be
combined to achieve sophisticated combinations of behaviors. For exanyelea@or might involve

a sequence of tasks, each of which is based on making a selection fronoiapssible subtasks.
Thus, they provide building blocks for constructing more complex behavior

From a software-engineering perspective, behavior trees givegagmmer a more structured context
in which to design behaviors. The behavior-tree structure forces tageer to think about the
handling of success and failure, rather than doing so in an ad hoc masmeould be the case when
expressing behaviors using a scripting language. Note that the notlestce, conditions and tasks,
are simply links to bits of code that execute the desired test or performsiredaction. The behavior
tree provides the structure within which to organize these modules.

Lecture 20 6 Spring 2013

