CMSC 631 – Program Analysis and Understanding

Lambda Calculus
Motivation

• Commonly-used programming languages are large are complex
 ▪ ANSI C99 standard: 538 pages
 ▪ ANSI C++ standard: 714 pages
 ▪ Java language specification 2.0: 505 pages

• Not good vehicles for understanding language features or explaining program analysis
Goal

• Develop a “core language” that has
 ▪ The essential features
 ▪ No overlapping constructs
 ▪ And none of the cruft
 - Extra features of full language can be defined in terms of the core language (“syntactic sugar”)

• Lambda calculus
 ▪ Standard core language for single-threaded procedural programming
 ▪ Often with added features (e.g., state); we’ll see that later
Lambda Calculus is Practical!

• An 8-bit microcontroller (Zilog Z8 encore board w/4KB SRAM) computing 1 + 1 using Church numerals in the Lambda calculus
Origins of Lambda Calculus

• Invented in 1936 by Alonzo Church (1903-1995)
 ▪ Princeton Mathematician
 ▪ Lectures of lambda calculus published in 1941
 ▪ Also know for
 - Church’s Thesis
 - All effective computation is expressed by recursive (decidable) functions, i.e., in the lambda calculus
 - Church’s Theorem
 - First order logic is undecidable
Lambda Calculus

• Syntax:

\[e ::= x \quad \text{variable} \]
\[\mid \lambda x.e \quad \text{function abstraction} \]
\[\mid e \ e \quad \text{function application} \]

• Only constructs in pure lambda calculus
 - Functions take functions as arguments and return functions as results
 - I.e., the lambda calculus supports higher-order functions
Semantics

• To evaluate \((\lambda x.e_1) \ e_2\)
 - Bind \(x\) to \(e_2\)
 - Evaluate \(e_1\)
 - Return the result of the evaluation

• This is called “beta-reduction”
 - \((\lambda x.e_1) \ e_2 \rightarrow_\beta e_1[e_2/x]\)
 - \((\lambda x.e_1) \ e_2\) is called a redex
 - We’ll usually omit the beta
Three Conveniences

• Syntactic sugar for local declarations
 ▪ `let x = e1 in e2` is short for `(λx.e2) e1`

• Scope of `λ` extends as far to the right as possible
 ▪ `λx.λy.x y` is `λx.(λy.(x y))`

• Function application is left-associative
 ▪ `x y z` is `(x y) z`
Scoping and Parameter Passing

• Beta-reduction is not yet precise
 - $(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]$
 - what if there are multiple x’s?

• Example:
 - let $x = a$ in
 - let $y = \lambda z.x$ in
 - let $x = b$ in y x
 - which x’s are bound to a, and which to b?
Static (Lexical) Scope

• Just like most languages, a variable refers to the closest definition

• Make this precise using variable renaming
 ▪ The term
 - let x = a in let y = λz.x in let x = b in y x
 ▪ is “the same” as
 - let x = a in let y = λz.x in let w = b in y w
 ▪ Variable names don’t matter
Free Variables and Alpha Conversion

• The set of free variables of a term is

\[
\begin{align*}
FV(x) &= \{x\} \\
FV(\lambda x. e) &= FV(e) - \{x\} \\
FV(e_1 \ e_2) &= FV(e_1) \cup FV(e_2)
\end{align*}
\]

• A term \(e \) is closed if \(FV(e) = \emptyset \)

• A variable that is not free is bound
Alpha Conversion

• Terms are equivalent up to renaming of bound variables
 ▪ $\lambda x. e = \lambda y. (e[y/x])$ if $y \notin \text{FV}(e)$

• This is often called *alpha conversion*, and we will use it implicitly whenever we need to avoid capturing variables when we perform substitution
Substitution

• Formal definition:
 - $x[e/x] = e$
 - $z[e/x] = z \quad \text{if } z \neq x$
 - $(e_1 e_2)[e/x] = (e_1[e/x] e_2[e/x])$
 - $(\lambda z.e_1)[e/x] = \lambda z.(e_1[e/x]) \quad \text{if } z \neq x \text{ and } z \notin \text{FV}(e)$

• Example:
 - $(\lambda x.y \, x) \, x =_\alpha (\lambda w.y \, w) \, x \rightarrow_\beta y \, x$
 - *(We won’t write alpha conversion down in the future)*
A Note on Substitutions

- People write substitution many different ways
 - $e_1[e_2/x]$
 - $e_1[x\rightarrow e_2]$
 - $[x/e_2]e_1$
 - and more...

- But they all mean the same thing
Multi-Argument Functions

• We can’t (yet) write multi-argument functions
 ▪ E.g., a function of two arguments $\lambda(x, y).e$

• Trick: Take arguments one at a time
 ▪ $\lambda x.\lambda y.e$
 ▪ This is a function that, given argument x, returns a function that, given argument y, returns e
 ▪ $(\lambda x.\lambda y.e) \ a \ b \rightarrow (\lambda y.e[a/x]) \ b \rightarrow e[a/x][b/y]$

• This is often called Currying and can be used to represent functions with any # of arguments
Booleans

• true = \lambda x.\lambda y.x

• false = \lambda x.\lambda y.y

• if a then b else c = a b c

• Example:
 - if true then b else c \rightarrow (\lambda x.\lambda y.x) b c \rightarrow (\lambda y. b) c \rightarrow b
 - if false then b else c \rightarrow (\lambda x.\lambda y.y) b c \rightarrow (\lambda y. y) c \rightarrow c
Combinators

• Any closed term is also called a
 combinator
 ▪ So true and false are both combinators

• Other popular combinators
 ▪ \(I = \lambda x.x \)
 ▪ \(S = \lambda x.\lambda y.x \)
 ▪ \(K = \lambda x.\lambda y.\lambda z.x \, z \, (y \, z) \)
 ▪ Can also define calculi in terms of combinators
 - E.g., the SKI calculus
 - Turns out the SKI calculus is also Turing complete
Pairs

• \((a, b) = \lambda x. \text{if } x \text{ then } a \text{ else } b\)
• \(\text{fst} = \lambda p.p \text{ true}\)
• \(\text{snd} = \lambda p.p \text{ false}\)

• Then
 ▪ \(\text{fst} (a, b) \rightarrow^* a\)
 ▪ \(\text{snd} (a, b) \rightarrow^* b\)
Natural Numbers (Church)

- $0 = \lambda x.\lambda y.y$
- $1 = \lambda x.\lambda y.x\,y$
- $2 = \lambda x.\lambda y.x(\,x\,y)$
- i.e., $n = \lambda x.\lambda y.<\text{apply } x \, n \, \text{times to } y>\$

- $\text{succ} = \lambda z.\lambda x.\lambda y.x(z \, x \, y)$
- $\text{iszero} = \lambda z.z\,(\lambda y.\text{false})\,\text{true}$
Natural Numbers (Scott)

- $0 = \lambda x.\lambda y.x$
- $1 = \lambda x.\lambda y.y\ 0$
- $2 = \lambda x.\lambda y.y\ 1$
- I.e., $n = \lambda x.\lambda y.y\ (n-1)$

- $\text{succ} = \lambda z.\lambda x.\lambda y.y\ z$
- $\text{pred} = \lambda z.z\ 0\ (\lambda x.x)$
- $\text{iszero} = \lambda z.z\ \text{true}\ (\lambda x.\text{false})$
A Nonderministic Semantics

\[(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]\]

\[e_1 \rightarrow e_1'\]

\[e_2 \rightarrow e_2'\]

\[e_1 e_2 \rightarrow e_1' e_2\]

\[e \rightarrow e'\]

\[(\lambda x. e) \rightarrow (\lambda x. e')\]

\[e_1 e_2 \rightarrow e_1' e_2'\]

- Why are these semantics non-deterministic?
Example

• We can apply reduction anywhere in a term
 ▪ \(\lambda x. (\lambda y.y) \times ((\lambda z.w) \times x) \rightarrow \lambda x. (x ((\lambda z.w) x)) \rightarrow \lambda x.x \; w \)
 ▪ \(\lambda x. (\lambda y.y) \times ((\lambda z.w) \times x) \rightarrow \lambda x.((\lambda y.y) \times w) \rightarrow \lambda x.x \; w \)

• Does the order of evaluation matter?
The Church-Rosser Theorem

• If \(a \rightarrow^* b \) and \(a \rightarrow^* c \), there exists \(d \) such that \(b \rightarrow^* d \) and \(c \rightarrow^* d \)

• Church-Rosser is also called confluence
Normal Form

• A term is in normal form if it cannot be reduced
 - Examples: \(\lambda x.x \), \(\lambda x.\lambda y.z \)

• By Church-Rosser Theorem, every term reduces to at most one normal form
 - Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

• Notice that for our application rule, the argument need not be in normal form
Beta-Equivalence

• Let \equiv_{β} be the reflexive, symmetric, and transitive closure of \to
 - E.g., $(\lambda x.x) \ y \to y \leftarrow (\lambda z.\lambda w.z) \ y \ y$, so all three are beta equivalent

• If $a \equiv_{\beta} b$, then there exists c such that $a \to^* c$ and $b \to^* c$
 - Proof: Consequence of Church-Rosser Theorem

• In particular, if $a \equiv_{\beta} b$ and both are normal forms, then they are equal
Not Every Term Has a Normal Form

• Consider
 - $\Delta = \lambda x. x \ x$
 - Then $\Delta \ \Delta \rightarrow \Delta \ \Delta \rightarrow \cdots$

• In general, self *application* leads to loops
 - ...which is good if we want recursion
A Fixpoint Combinator

• Also called a paradoxical combinator
 - \(Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \)
 - Note: There are many versions of this combinator

• Then \(Y \ F =_\beta F \ (Y \ F) \)
 - \(Y \ F = (\lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))) \ F \)
 - \(\rightarrow (\lambda x. F (x x)) (\lambda x. F (x x)) \)
 - \(\rightarrow F ((\lambda x. F (x x)) (\lambda x. F (x x))) \)
 - \(\leftarrow F (Y \ F) \)
Example

- Fact \(n = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1) \)
- Let \(G = \lambda f. \langle\text{body of factorial}\rangle \)
 - I.e., \(G = \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times f(n-1) \)
- \(Y \ G \ 1 = \beta \ G \ (YG) \ 1 \)
 - \(= \beta (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times f(n-1)) (YG) \ 1 \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times ((YG) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (G (YG) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times f(n-1) (YG) \ 0) \)
 - \(= \beta \text{if } 1 = 0 \text{ then } 1 \text{ else } 1 \times (\text{if } 0 = 0 \text{ then } 1 \text{ else } 0 \times ((YG) \ 0) \)
 - \(= \beta 1 \times 1 = 1 \)
In Other Words

• The Y combinator “unrolls” or “unfolds” its argument an infinite number of times
 - $Y\ G = G\ (Y\ G) = G\ (G\ (Y\ G) = G\ (G\ (G\ (Y\ G)))) = \ldots$
 - G needs to have a “base case” to ensure termination

• But, only works because we’re call-by-name
 - Different combinator(s) for call-by-value
 - $Z = \lambda f. (\lambda x. f (\lambda y. x x y)) \ (\lambda x. f (\lambda y. x x y))$
 - Why is this a fixed-point combinator? How does its difference from Y make it work for call-by-value?
Encodings

• Encodings are fun

• They show language expressiveness

• In practice, we usually add constructs as primitives
 ▪ Much more efficient
 ▪ Much easier to perform program analysis on and avoid silly mistakes with
 - E.g., our encodings of true and 0 are exactly the same, but we may want to forbid mixing booleans and integers
Lazy vs. Eager Evaluation

• Our non-deterministic reduction rule is fine for theory, but awkward to implement

• Two deterministic strategies:

 ▪ **Lazy:** Given \((\lambda x.e_1)\) \(e_2\), do not evaluate \(e_2\) if \(x\) does not “need” \(e_1\)

 - Also called left-most, call-by-name, call-by-need, applicative, normal-order (with slightly different meanings)

 ▪ **Eager:** Given \((\lambda x.e_1)\) \(e_2\), always evaluate \(e_2\) fully before applying the function

 - Also called call-by-value
Lazy Operational Semantics

\[
\begin{align*}
\lambda x . e_1 & \Rightarrow^/ (\lambda x . e_1) \\
\overline{e_1} & \Rightarrow^/ (\lambda x . e \ e_2[x]) \Rightarrow^/ e' \\
\overline{e_1 \ e_2} & \Rightarrow^/ e'
\end{align*}
\]

• The rules are deterministic and \textit{big-step}
 ■ The right-hand side is reduced “all the way”

• The rules do not reduce under \(\lambda\)

• The rules are normalizing:
 ■ If \(a\) is closed and there is a normal form \(b\) such that \(a \Rightarrow^* b\), then \(a \Rightarrow^/ d\) for some \(d\)
Eager (Big-Step) Op. Semantics

\[(\lambda x.e_1) \rightarrow^e (\lambda x.e_1)\]

\[e_1 \rightarrow^e \lambda x.e \quad e_2 \rightarrow^e e' \quad e[e'[x] \rightarrow^e e'' \quad e_1 \ e_2 \rightarrow^e e''\]

- This big-step semantics is also deterministic and does not reduce under \(\lambda\)
- But it is not normalizing
 - Example: \(\text{let } x = \Delta \ \Delta \text{ in } (\lambda y.y)\)
Lazy vs. Eager in Practice

• Lazy evaluation (call by name, call by need)
 ▪ Has some nice theoretical properties
 ▪ Terminates more often
 ▪ Lets you play some tricks with “infinite” objects
 ▪ Main example: Haskell

• Eager evaluation (call by value)
 ▪ Is generally easier to implement efficiently
 ▪ Blends more easily with side effects
 ▪ Main examples: Most languages (C, Java, ML, etc.)
The λ calculus is a prototypical functional programming language:
- Lots of higher-order functions
- No side-effects

In practice, many functional programming languages are “impure” and permit side-effects
- But you’re supposed to avoid using them
Functional Programming Today

- Two main camps:
 - Haskell – Pure, lazy functional language; no side effects
 - ML (SML/NJ, OCaml) – Call-by-value, with side effects

- Still around: LISP, Scheme
 - Disadvantage/advantage: No static type systems
Influence of Functional Programming

• Functional ideas in many other languages

 ▪ Garbage collection was first designed with Lisp; most languages often rely on a GC today
 ▪ Generics in Java/C++ came from polymorphism in ML and from type classes in Haskell
 ▪ Higher-order functions and closures (used widely in Ruby; proposed extension to Java) are pervasive in all functional languages
 ▪ Many data abstraction principles of OO came from ML’s module system
 ▪ …
Call-by-Name Example

OCaml

```
let cond p x y = if p then x else y
let rec loop () = loop ()
let z = cond true 42 (loop ())
```

infinite loop at call

Haskell

```
cond p x y = if p then x else y
loop () = loop ()
z = cond True 42 (loop ())
```

3rd argument never used by cond, so never invoked
Two Cool Things to Do with CBN

• Build control structures with functions

cond p x y = if p then x else y

• “Infinite” data structures

integers n = n:(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)