Type Qualifiers

Slides due to Jeff Foster
University of Maryland

Joint work with Alex Aiken, Rob Johnson, John Kodumal, Tachio Terauchi, and David Wagner
Introduction

• Ensuring that software is secure is hard

• Standard practice for software quality:
 - Testing
 • Make sure program runs correctly on set of inputs
 - Code auditing
 • Convince yourself and others that your code is correct
Drawbacks to Standard Approaches

• Difficult
• Expensive
• Incomplete

• A malicious adversary is trying to exploit anything you miss!
Tools for Security

• What more can we do?
 - Build tools that analyze source code
 • Reason about all possible runs of the program
 - Check limited but very useful properties
 • Eliminate categories of errors
 • Let people concentrate on the deep reasoning
 - Develop programming models
 • Avoid mistakes in the first place
 • Encourage programmers to think about security
Tools Need Specifications

```c
spin_lock_irqsave(&tty->read_lock, flags);
put_tty_queue_nolock(c, tty);
spin_unlock_irqrestore(&tty->read_lock, flags);
```

- **Goal:** Add specifications to programs
 In a way that...
 - Programmers will accept
 - Lightweight
 - Scales to large programs
 - Solves many different problems
Type Qualifiers: Lightweight Specifications

- Extend standard type systems (C, Java, ML)
 - Programmers already use types
 - Programmers understand types
 - Get programmers to write down a little more...

const int
ptr(tainted char)
kernelptr(char) → char

ANSI C
Format-string vulnerabilities
User/kernel vulnerabilities
Application: Format String Vulnerabilities

- I/O functions in C use format strings

  ```c
  printf("Hello!");            Hello!
  printf("Hello, %s!", name);  Hello, name!
  ```

- Instead of

  ```c
  printf("%s", name);
  ```

 Why not

  ```c
  printf(name);
  ```
Format String Attacks

- Adversary-controlled format specifier
 name := <data-from-network>
 printf(name); /* Oops */

 - Attacker sets name = “%s%s%s” to crash program
 - Attacker sets name = “...%n...” to write to memory
 • Yields (often remote root) exploits

- These bugs still occur in the wild
Using Tainted and Untainted

- Add qualifier annotations

  ```c
  int printf(untainted char *fmt, ...)
  tainted char *getenv(const char *)
  ```

 tainted = may be controlled by adversary
 untainted = must not be controlled by adversary

 Taintedness is an **integrity** property
 - Dual to confidentiality, as per last lecture
 - The technique we describe applies to **confidentiality** too
Subtyping

void f(tainted int);
untainted int a;
f(a);

void g(untainted int);
tainted int b;
g(b);

OK

f accepts tainted or untainted data
untainted \leq\ tainted

Error

g accepts only untainted data
tainted \not\leq\ untainted
untainted < tainted
The Plan

• The Nice Theory

• Polymorphism

• The Icky Stuff in C
Type Qualifiers for MinML

- We’ll add type qualifiers to MinML
 - Same approach works for other languages (like C)

- Standard type systems define types as
 - $t ::= c_0(t, \ldots, t) \mid \ldots \mid c_n(t, \ldots, t)$
 - Where $\Sigma = c_0\ldots c_n$ is a set of type constructors

- Recall the types of MinML
 - $t ::= \text{int} \mid \text{bool} \mid t \rightarrow t$
 - Here $\Sigma = \text{int}, \text{bool}, \rightarrow$ (written infix)
Type Qualifiers for MinML (cont’d)

• Let Q be the set of type qualifiers
 - Assumed to be chosen in advance and fixed
 - E.g., $Q = \{\text{tainted}, \text{untainted}\}$
• Then the qualified types are just
 - $qt ::= Q \ s$
 - $s ::= c0(qt, \ldots, qt) \mid \ldots \mid cn(qt, \ldots, qt)$
 - Allow a type qualifier to appear on each type constructor
• For MinML
 - $qt ::= \text{int}^Q \mid \text{bool}^Q \mid qt \rightarrow^Q qt$
Abstract Syntax of MinML with Qualifiers

\[e ::= x | n | \text{true} | \text{false} | \text{if} \ e \ \text{then} \ e \ \text{else} \ e | \]
\[\text{fun} \ f^Q(x:qt):qt = e | e \ e | \text{annot}(Q, e) | \text{check}(Q, e) \]

- \(\text{annot}(Q, e) = \text{“expression e has qualifier Q”} \)
- \(\text{check}(Q, e) = \text{“fail if e does not have qualifier Q”} \)
 - Checks only the top-level qualifier

• Examples:
 - \(\text{fun fread}(x:qt):\text{int}^{\text{tainted}} = \ldots \text{annot}(\text{tainted}, 42) \)
 - \(\text{fun printf}(x:qt):qt’ = \text{check}(\text{untainted}, x), \ldots \)
Typing Rules: Qualifier Introduction

• Newly-constructed values have “bare” types

\[G \vdash n : \text{int} \]

\[G \vdash \text{true} : \text{bool} \quad G \vdash \text{false} : \text{bool} \]

• Annotation adds an outermost qualifier

\[G \vdash e_1 : s \]

\[G \vdash \text{annot}(Q, e) : Q \cdot s \]
Typing Rules: Qualifier Elimination

- By default, discard qualifier at destructors

\[
\begin{align*}
G \vdash e1 : \text{bool} & \quad G \vdash e2 : \text{qt} & \quad G \vdash e3 : \text{qt} \\
G \vdash \text{if } e1 \text{ then } e2 \text{ else } e3 : \text{qt}
\end{align*}
\]

- Use `check()` if you want to do a test

\[
\begin{align*}
G \vdash e1 : \text{Q s} & \\
G \vdash \text{check(Q, e)} : \text{Q s}
\end{align*}
\]
Subtyping

• Our example used subtyping
 - If anyone expecting a T can be given an S instead, then S is a subtype of T.
 - Allows untainted to be passed to tainted positions
 - I.e., $\text{check(tainted, annot(untainted, 42))}$ should typecheck

• How do we add that to our system?
Partial Orders

• Qualifiers Q come with a partial order \leq:
 - $q \leq q$ (reflexive)
 - $q \leq p, p \leq q \Rightarrow q = p$ (anti-symmetric)
 - $q \leq p, p \leq r \Rightarrow q \leq r$ (transitive)

• Qualifiers introduce subtyping

• In our example:
 - untainted $<$ tainted
Example Partial Orders

- Lower in picture = lower in partial order
- Edges show \leq relations

2-point lattice

Discrete partial order
Combining Partial Orders

• Let \((Q_1, \leq_1)\) and \((Q_2, \leq_2)\) be partial orders
• We can form a new partial order, their cross-product:

\[(Q_1, \leq_1) \times (Q_2, \leq_2) = (Q, \leq) \]

where
- \(Q = Q_1 \times Q_2\)
- \((a, b) \leq (c, d)\) if \(a \leq_1 c\) and \(b \leq_2 d\)
Example

• Makes sense with orthogonal sets of qualifiers
 - Allows us to write type rules assuming only one set of qualifiers
Extending the Qualifier Order to Types

\[
\begin{align*}
Q \leq Q' & \quad \text{bool}^Q \leq \text{bool}^{Q'} \\
Q \leq Q' & \quad \text{int}^Q \leq \text{int}^{Q'}
\end{align*}
\]

• Add one new rule *subsumption* to type system

\[
G |-- e : qt \quad qt \leq qt' \\
G |-- e : qt'
\]

• Means: If any position requires an expression of type \(qt'\), it is safe to provide it a subtype \(qt\).
Use of Subsumption

|-- 42 : int
|-- annot(untainted, 42) : untainted int untainted ≤ tainted
|-- annot(untainted, 42) : tainted int
|-- check(tainted, annot(untainted, 42)) : tainted int
Subtyping on Function Types

• What about function types?

\[\text{qt1} \rightarrow^{Q} \text{qt2} \leq \text{qt1}' \rightarrow^{Q'} \text{qt2}' \]

• Recall: \(S \) is a subtype of \(T \) if an \(S \) can be used anywhere a \(T \) is expected
 - When can we replace a call “\(f \ x \)” with a call “\(g \ x \)”?
Replacing “f x” by “g x”

• When is $q_t1' \to^Q q_t2' \leq q_t1 \to^Q q_t2$?

• Return type:
 - We are expecting q_t2 (f’s return type)
 - So we can only return at most q_t2
 - $q_t2' \leq q_t2$

• Example: A function that returns tainted can be replaced with one that returns untainted
Replacing “f x” by “g x” (cont’d)

• When is $qt1' \rightarrow^Q qt2' \leq qt1 \rightarrow^Q qt2$?

• Argument type:
 - We are supposed to accept $qt1$ (f’s argument type)
 - So we must accept at least $qt1$
 - $qt1 \leq qt1'$

• Example: A function that accepts untainted can be replaced with one that accepts tainted
Subtyping on Function Types

\[qt_1' \leq qt_1 \quad qt_2 \leq qt_2' \quad Q \leq Q' \]
\[qt_1 \rightarrow^Q qt_2 \leq qt_1' \rightarrow^Q' qt_2' \]

- We say that \(\rightarrow \) is
 - Covariant in the range (subtyping dir the same)
 - Contravariant in the domain (subtyping dir flips)
Dynamic Semantics with Qualifiers

• Operational semantics tags values with qualifiers
 - \(v ::= x \mid n^Q \mid \text{true}^Q \mid \text{false}^Q \)
 - \(\text{fun f}^Q (x : q{t1}) : q{t2} = e \)

• Evaluation rules same as before, carrying the qualifiers along, e.g.,

\[
\text{if true}^Q \text{ then e1 else e2 } \rightarrow e1
\]
Dynamic Semantics with Qualifiers (cont’d)

• One new rule checks a qualifier:

\[
\frac{Q' \leq Q}{\text{check}(Q, v^{Q'}) \rightarrow v}
\]

- Evaluation at a check can continue only if the qualifier matches what is expected
 • Otherwise the program gets stuck
- (Also need rule to evaluate under a check)

• Goal: don’t do any checking at run-time
 - Instead, prove that all checks will succeed
Soundness

• We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

• Proof: Exercise
 - See if you can adapt proofs to this system
 - (Not too much work; really just need to show that check doesn’t get stuck)
Updateable References

• Our MinML language is missing side-effects
 - There’s no way to write to memory
 - Recall that this doesn’t limit expressiveness
 • But side-effects sure are handy
Language Extension

- **We’ll add ML-style references**
 - $e ::= ... | \text{ref}^Q e | !e | e := e$
 - $\text{ref}^Q e$ -- Allocate memory and set its contents to e
 - Returns memory location
 - Q is qualifier on pointer (not on contents)
 - $!e$ -- Return the contents of memory location e
 - $e1 := e2$ -- Update $e1$’s contents to contain $e2$

- **Things to notice**
 - No null pointers (memory always initialized)
 - No mutable local variables (only pointers to heap allowed)
Static Semantics

• Extend type language with references:
 - qt ::= ... | ref^Q qt

 • Note: In ML the ref appears on the right

\[
\begin{align*}
G \vdash e : qt \\
\hline
G \vdash \text{ref}^Q e : \text{ref}^Q qt
\end{align*}
\]

\[
\begin{align*}
G \vdash e : \text{ref}^Q qt \\
\hline
G \vdash !e : qt
\end{align*}
\]

\[
\begin{align*}
G \vdash e1 : \text{ref}^Q qt & \quad G \vdash e2 : qt \\
\hline
G \vdash e1 := e2 : qt
\end{align*}
\]
Subtyping References

• The wrong rule for subtyping references is

\[
Q \leq Q' \quad qt \leq qt' \\
\hline
\text{ref}^Q qt \leq \text{ref}^{Q'} qt'
\]

• Counterexample

```plaintext
let x : \text{ref}^Q \text{untainted int} = \text{ref}^0_{\text{untainted}} \text{in} for any Q
let y : \text{ref}^Q \text{tainted int} = x \text{in}
  y := 3^{\text{tainted}};
check(\text{untainted}, !x) \quad \text{ok if ref t int} \leq \text{ref ut int}
oops!
```
You’ve Got Aliasing!

- We have multiple names for the same memory location
 - But they have different types
 - *And we can* write *into memory at different types*
Solution #1: Java’s Approach

• Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

• Counterexample:
 - Foo[] $a = \text{new Foo}[5]$;
 - Object[] $b = a$;
 - $b[0] = \text{new Object}()$; // forbidden at runtime
 - $a[0].\text{foo}()$; // ...so this can’t happen
Solution #2: Purely Static Approach

• Reason from rules for functions
 - A reference is like an object with two methods:
 • \text{get} : \text{unit} \rightarrow qt
 • \text{set} : qt \rightarrow \text{unit}
 - Notice that qt occurs both co- and contravariantly

• The right rule:

\[
\begin{align*}
Q &\leq Q' \\
qt &\leq qt'
\end{align*}
\]

\[
\quad qt' \leq qt \quad \text{or} \quad qt = qt'
\]

\[
\begin{align*}
\text{ref}^Q qt &\leq \text{ref}^{Q'} qt' \\
\text{or} \quad \text{ref}^Q qt &\leq \text{ref}^{Q'} qt'
\end{align*}
\]
Challenge Problem: Soundness

• We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

• Can you prove it with updateable references?
 - Hint: You’ll need a stronger induction hypothesis
 - You’ll need to reason about types in the store
 - E.g., so that if you retrieve a value out of the store, you know what type it has
Type Qualifier Inference

• Recall our motivating example
 - We gave a legacy C program that had no information about qualifiers
 - We added signatures only for the standard library functions
 - Then we checked whether there were any contradictions

• This requires type qualifier inference
Type Qualifier Inference Statement

• Given a program with
 - Qualifier annotations
 - Some qualifier checks
 - And no other information about qualifiers
• Does there exist a valid typing of the program?
 - I.e., can we produce a legal typing derivation?
• We want an algorithm to solve this problem
Type Checking vs. Type Inference

• Let’s think about C’s type system
 - C requires programmers to annotate function types
 - ...but not other places
 • E.g., when you write down 3 + 4, you don’t need to give that a type
 - So all type systems trade off programmer annotations vs. computed information

• Type checking = it’s “obvious” how to check
• Type inference = it’s “more work” to check
Why Do We Want Qualifier Inference?

• Because our programs weren’t written with qualifiers in mind
 - They don’t have qualifiers in their type annotations
 - In particular, functions don’t list qualifiers for their arguments

• Because it’s less work for the programmer
 - ...but it’s harder to understand when a program doesn’t type check
First Problem: Subsumption Rule

\[G |-- e : qt \quad qt \leq qt' \]
\[G |-- e : qt' \]

• We’re allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not syntax driven

• Fortunately, we don’t have that many choices
 - For each expression \(e \), we need to decide
 • Do we apply the “regular” rule for \(e \)?
 • Or do we apply subsumption (how many times)?
Getting Rid of Subsumption

• Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 - Proof: Transitivity of \leq

• So now we need only apply subsumption once after each expression
Getting Rid of Subsumption (cont’d)

- We drop the separate subsumption rule
 - Incorporate it directly into the other rules

\[
\text{G} \vdash e_1 : qt' \rightarrow Q' \quad qt'' \\
\text{qt}_1 \leq qt' \quad Q' \leq Q \quad qt'' \leq qt_2 \\
\text{G} \vdash e_1 : qt_1 \rightarrow Q \quad qt_2 \\
\text{qt} \leq qt_1
\]

\[
\text{G} \vdash e_1 \quad e_2 : qt_1 \\
\text{G} \vdash e_1 \quad e_2 : qt_2
\]
Getting Rid of Subsumption (cont’d)

1. Fold \(e_2 \) subsumption into rule

\[
G \vdash e_1 : q_t' \rightarrow^Q q_t'' \\
q_t1 \leq q_t' \quad Q' \leq Q \quad q_t'' \leq q_t2
\]

\[
G \vdash e_1 : q_t1 \rightarrow^Q q_t2 \\
G \vdash e_2 : q_t \quad q_t \leq q_t1
\]

\[
G \vdash e_1 \ e_2 : q_t2
\]
Getting Rid of Subsumption (cont’d)

• 2. Fold e_1 subsumption into rule

\[
\begin{align*}
q_1t &\leq qt' & Q' &\leq Q & q_2t'' &\leq qt_2 \\
G |-- e_1 : qt' &\rightarrow^{Q'} qt'' & G |-- e_2 : qt & qt &\leq qt_1 \\
\hline
G |-- e_1 e_2 : qt_2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

• 3. We don’t use Q, so remove that constraint

\[
q_1 \leq q' \quad q'' \leq q_2
\]

\[
G \mid-- e_1 : q' \rightarrow^{Q} q'' \quad G \mid-- e_2 : q \quad q \leq q_1
\]

\[
G \mid-- e_1 e_2 : q_2
\]
Getting Rid of Subsumption (cont’d)

• 4. Apply transitivity of \leq
 - Remove intermediate q_t1

\[
\begin{align*}
q_t’’ &\leq q_t2 \\
G |-- e1 : q_t’ &\rightarrow Q’ q_t’’ & G |-- e2 : q_t & q_t \leq q_t’ \\
\hline
G |-- e1 e2 : q_t2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

5. We’re going to apply subsumption afterward, so no need to weaken $q^{t''}$

$$G |-- e_1 : q^{t'} \rightarrow^{Q'} q^{t''} \quad G |-- e_2 : q^{t} \quad q^{t} \leq q^{t'}$$

$$G |-- e_1 e_2 : q^{t''}$$
Getting Rid of Subsumption (cont’d)

• We similarly adjust the other rules
 – We’re left with a purely syntax-directed system

• Good! Now we’re half-way to an algorithm
Second Problem: Assumptions

• Let’s take a look at the rule for functions:

\[
G, f : qt1 \rightarrow^Q qt2, x:qt1 \vdash e : qt2' \quad qt2' \leq qt2
\]

\[
G \vdash \text{fun } f^Q (x:qt1):qt2 = e : qt1 \rightarrow^Q qt2
\]

• There’s a problem with applying this rule
 - We’re assuming that we’re given the argument type \(qt1\) and the result type \(qt2\)
 - But in the problem statement, we said we only have annotations and checks
Unknowns in Qualifier Inference

• We’ve got regular type annotations for functions
 - (We could even get away without these...)

\[G, f : ? \rightarrow Q^?, x : ? \vdash e : qt^? \quad qt^? \leq qt^2 \]
\[G \vdash \text{fun } f^Q (x : t_1) : t_2 = e : q_1 \rightarrow Q q_2 \]

• How do we pick the qualifiers for \(f \)?
 - We generate fresh, unknown qualifier variables and then solve for them
Adding Fresh Qualifiers

• We’ll add qualifier variables \(a, b, c, \ldots \) to our set of qualifiers
 - (Letters closer to \(p, q, r \) will stand for constants)

• Define \(\text{fresh} : t \rightarrow qt \) as
 - \(\text{fresh}(\text{int}) = \text{int}^a \)
 - \(\text{fresh}(\text{bool}) = \text{bool}^a \)
 - \(\text{fresh}(\text{ref } t) = \text{ref}^a \text{fresh}(t) \)
 - \(\text{fresh}(t_1 \rightarrow t_2) = \text{fresh}(t_1) \rightarrow^a \text{fresh}(t_2) \)
 • Where \(a \) is fresh
Rule for Functions

qt1 = fresh(t1) qt2 = fresh(t2)

\[G, f: qt1 \rightarrow^Q qt2, x:qt1 |-- e : qt2' \]
\[qt2' \leq qt2 \]

\[G |-- \text{fun } f^Q (x:t1):t2 = e : qt1 \rightarrow^Q qt2 \]
A Picture of Fresh Qualifiers

\begin{itemize}
\item \texttt{ptr(tainted char)}
\item \texttt{int} \rightarrow \texttt{user ptr(int)}
\end{itemize}
Where Are We?

- A syntax-directed system
 - For each expression, clear which rule to apply
- Constant qualifiers
- Variable qualifiers
 - Want to find a valid assignment to constant qualifiers
- Constraints $q_t \leq q_t'$ and $Q \leq Q'$
 - These restrict our use of qualifiers
 - These will limit solutions for qualifier variables
Qualifier Inference Algorithm

1. Apply syntax-directed type inference rules
 - This generates fresh unknowns and constraints among the unknowns
2. Solve the constraints
 - Either compute a solution
 - Or fail, if there is no solution
 - Implies the program has a type error
 - Implies the program may have a security vulnerability
Solving Constraints: Step 1

• Constraints of the form $q_t \leq q_t'$ and $Q \leq Q'$
 - $q_t ::= \text{int}^Q \mid \text{bool}^Q \mid q_t \rightarrow^Q q_t \mid \text{ref}^Q q_t$

• Solve by simplifying
 - Can read solution off of simplified constraints

• We’ll present algorithm as a rewrite system
 - $S \Rightarrow S'$ means constraints S rewrite to (simpler) constraints S'
 - Rules are derived from standard subtyping rules
Solving Constraints: Step 1

- $S + \{ \text{int}^Q \leq \text{int}^Q' \} \implies S + \{ Q \leq Q' \}$
- $S + \{ \text{bool}^Q \leq \text{bool}^Q' \} \implies S + \{ Q \leq Q' \}$
- $S + \{ \text{qt1} \rightarrow^Q \text{qt2} \leq \text{qt1}' \rightarrow^Q' \text{qt2}' \} \implies$
 $\quad S + \{ \text{qt1}' \leq \text{qt1} \} + \{ \text{qt2} \leq \text{qt2}' \} + \{ Q \leq Q' \}$
- $S + \{ \text{ref}^Q \text{qt1} \leq \text{ref}^Q' \text{qt2} \} \implies$
 $\quad S + \{ \text{qt1} \leq \text{qt2} \} + \{ \text{qt2} \leq \text{qt1} \} + \{ Q \leq Q' \}$
- $S + \{ \text{mismatched constructors} \} \implies \text{error}$
 - Can’t happen if program correct w.r.t. std types
Solving Constraints: Step 2

- Our type system is called a structural subtyping system
 - If $q_t \leq q_t'$, then q_t and q_t' have the same shape

- When we’re done with step 1, we’re left with constraints of the form $Q \leq Q'$
 - Where either of Q, Q' may be an unknown
 - This is called an atomic subtyping system
 - That’s because qualifiers don’t have any “structure”
Constraint Generation

\[\text{ptr(int) } f(x : \text{int}) = \{ \ldots \} \quad y := f(z) \]
Constraints as Graphs

\[\alpha_0 \leq \alpha_1 \leq \alpha_2 \leq \alpha_4 \leq \alpha_3 = \alpha_5 \leq \alpha_6 \leq \alpha_1 \]

untainted

tainted
Some Bad News

• Solving atomic subtyping constraints is NP-hard in the general case

• The problem comes up with some really weird partial orders
But that’s OK

• These partial orders don’t seem to come up in practice

• Most qualifier partial orders have one of two desirable properties:
 - They either always have least upper bounds or greatest lower bounds for any pair of qualifiers

• If Q is a lattice, it turns out we can use a really simple algorithm to check satisfiability of constraints over Q
Lattices, Lubs and Glbs

• lub = Least upper bound
 - \(p \) lub \(q = r \) such that
 • \(p \leq r \) and \(q \leq r \)
 • If \(p \leq s \) and \(q \leq s \), then \(r \leq s \)

• glb = Greatest lower bound, defined dually

• A lattice is a partial order such that lubs and glbs always exist
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

\[\alpha_0 \leq \alpha_1 \leq \alpha_4 \leq \alpha_3 = \alpha_5 \leq \alpha_8 \]

untainted

tainted
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

\[\alpha_0 \leq \alpha_1 \leq \alpha_4 \leq \alpha_3 = \alpha_5 \leq \alpha_8 \]

untainted

tainted
Satisfiability via Graph Reachability

tainted ≤ α₆ ≤ α₁ ≤ α₃ ≤ α₅ ≤ α₇ ≤ untainted

untainted

α₆ ≤ α₁
α₂ ≤ α₄
α₃ = α₅

untainted

α₇

α₈

CMSC 631
Satisfiability in Linear Time

• Initial program of size \(n \)
 - Fixed set of qualifiers tainted, untainted, ...

• Constraint generation yields \(O(n) \) constraints
 - Recursive abstract syntax tree walk

• Graph reachability takes \(O(n) \) time
 - Works for semi-lattices, discrete p.o., products
Limitations of Subtyping

• Subtyping gives us a kind of polymorphism
 – A polymorphic type represents multiple types
 – In a subtyping system, q_t represents q_t and all of q_t’s subtypes

• As we saw, this flexibility helps make the analysis more precise
 – But it isn’t always enough…
Limitations of Subtype Polymorphism

• Consider \textit{tainted} and \textit{untainted} again
 - untainted \leq tainted
• Let’s look at the identity function
 - \texttt{fun id (x:int):int = x}
• What qualified types can we infer for \texttt{id}?
Types for id

- \textbf{fun id (x:int):int = x} (ignoring int, qual on id)
 - \textbf{tainted} \rightarrow \textbf{tainted}
 - Fine but untainted data passed in becomes tainted
 - \textbf{untainted} \rightarrow \textbf{untainted}
 - Fine but can’t pass in tainted data
 - \textbf{untainted} \rightarrow \textbf{tainted}
 - Not too useful
 - \textbf{tainted} \rightarrow \textbf{untainted}
 - Impossible
Function Calls and Context-Sensitivity

- All calls to `strdup` conflated
 - Monomorphic or context-insensitive

```c
char *strdup(char *str) {
    // return a copy of str
}
char *a = strdup(tainted_string);
char *b = strdup(untainted_string);
```
What’s Happening Here?

• The qualifier on x appears both covariantly and contravariantly in the type
 - We’re stuck

• We need *parametric polymorphism*
 - We want to give `fun id (x:int):int = x` the type
 $\forall a. \text{int}^a \rightarrow \text{int}^a$
The Observation of Parametric Polymorphism

- Type inference on id yields a proof like this:

\[
\text{id : } a \rightarrow a
\]

- If we just infer a type for id, no constraints will be placed on a
The Observation of Parametric Polymorphism

- We can duplicate this proof for any a, in any type environment
The Observation of Parametric Polymorphism

- The constraints on a only come from “outside”
The Observation of Parametric Polymorphism

- But the two uses of \textit{id} are different
 - We can inline \textit{id}
 - And compute a type with a different \textit{a} each time
Implementing Polymorphism Efficiently

• **ML-style polymorphic type inference is EXPTIME-hard**
 - In practice, it’s fine
 - Bad case can’t happen here, because we’re polymorphic only in the qualifiers
 • That’s because we’ll apply this to C

• **We need polymorphically constrained types**
 \[x : \forall a.q_t \text{ where } P \]
 - For any qualifiers \(a \) where constraints \(P \) hold, \(x \) has type \(q_t \)
Polymorphically Constrained Types

- Must copy constraints at each instantiation
 - Inefficient
 - (And hard to implement)
A Better Solution: CFL Reachability

• Can reduce this to another problem
 - Equivalent to the constraint-copying formulation
 - Supports polymorphic recursion in qualifiers
 - It’s easy to implement
 - It’s efficient ($O(n^3)$)
 • Previous best algorithm $O(n^8)$

• Idea due to Horwitz, Reps, and Sagiv, and Rehof, Fahndrich, and Das
The Problem Restated: Unrealizable Paths

• No execution can exhibit that particular call/return sequence
Only Propagate Along Realizable Paths

- Add edge labels for calls and returns
 - Only propagate along *valid* paths whose returns balance calls
Instantiation Constraints

• These edges represent a new kind of constraint
 \[a \leq (+/-) i b \]
 - At use \(i \) of a polymorphic type
 - Qualifier variable \(a \)
 - Is instantiated to qualifier \(b \)
 - Either positively or negatively (or both)

• Formally, these are semiunification constraints
 - But we won’t discuss that
Type Rules

• We’ll use Hindley-Milner style polymorphism
 - Quantifiers only appear at the outmost level
 - Quantified types only appear in the environment

qt1 = fresh(t1) qt2 = fresh(t2)

\[G, f: qt1 \rightarrow^Q qt2, x:qt1 \vdash e : qt2' \]
\[qt2' \leq qt2 \]

\[G \vdash \text{fun } f^Q (x:t1):t2 = e : qt1 \rightarrow^Q qt2 \]

• * This is not quite the right rule, yet…
Type Rules

\[
\begin{align*}
qt &= G(f) & qt' &= \text{fresh}(qt) & qt &\leq +i qt' \\
G &\vdash f_i : qt'
\end{align*}
\]

- Implicit: Only apply to function names (f)
- Each has a label i
- fresh(qt) generates type like qt but with fresh quals
 - *This is not quite the right rule yet...
Resolving Instantiation Constraints

- Just like subtyping, reduce to only qualifiers
 - \(S + \{ \text{int}^Q \leq \pi \text{int}^{Q'} \} \implies S + \{ Q \leq \pi Q' \} \)
 - \(p \) stands for either + or -
 - ...
 - \(S + \{ qt1 \rightarrow^Q qt2 \leq \pi qt1' \rightarrow^Q qt2' \} \implies \)
 \[S + \{ qt1 \leq (-p)i qt1' \} + \{ qt2 \leq \pi qt2 \} + \{ Q \leq \pi Q' \} \]
 - Here -(+ is - and -(-) is +
Instantiation Constraints as Graphs

- Three kinds of edges
 - $Q \leq Q'$ becomes $Q \rightarrow Q'$
 - $Q \leq +i Q'$ becomes $Q \rightarrow_{i} Q'$
 - $Q \leq -i Q'$ becomes $Q \leftarrow_{i} Q'$
let idpair (x:int*int):int*int = x in
let f y = idpair\,(3^q, 4^p) in
let z = snd (f\,(2\,0))
Two Observations

• We are doing constraint copying
 - Notice the edge from b to d got “copied” to p to f
 • We didn’t draw the transitive edge, but we could have

• This algorithm can be made demand-driven
 - We only need to worry about paths from constant qualifiers
 - Good implications for scalability in practice
CFL Reachability

- We’re trying to find paths through the graph whose edges are a language in some grammar
 - Called the CFL Reachability problem
 - Computable in cubic time
CFL Reachability Grammar

\[
S ::= P N
\]
\[
P ::= M P
|)i P
| empty
| for any \(i \)
\]
\[
N ::= M N
| (i N
| empty
| for any \(i \)
\]
\[
M ::= (i M)i
| M M
| d regular subtyping edge
| empty
\]

- Paths may have unmatched but not mismatched parens
Global Variables

- Consider the following identity function
 \[\text{fun id(x:int):int = z := x; !z} \]
 - Here \(z \) is a global variable

- Typing of \(\text{id} \), roughly speaking:

\[
\begin{array}{ccc}
 & z & \\
\alpha & \rightarrow & b \\
 & a \\
\end{array}
\]

\[
\text{id : a \rightarrow b}
\]
Global Variables

• Suppose we instantiate and apply \textit{id} to \textit{q} inside of a function

\[\begin{align*}
 \text{d} & \xrightarrow{(2)} \text{z} & \text{b} & \xrightarrow{(1)} \text{c} \\
 \text{a} & \xleftarrow{(1)} \text{q}
\end{align*} \]

- And then another function returns \textit{z}
- Uh oh! \((1)(2)\) is not a valid flow path
 • But \textit{q} may certainly pop out at \textit{d}
Thou Shalt Not Quantify a Global Type (Qualifier) Variable

• We violated a basic rule of polymorphism
 - We generalized a variable free in the environment
 - In effect, we duplicated z at each instantiation

• Solution: Don’t do that!
Our Example Again

- We want anything flowing into z, on any path, to flow out in any way
 - Add a self-loop to z that consumes any mismatched parens
Typing Rules, Fixed

• Track unquantifiable vars at generalization

\[qt_1 = \text{fresh}(t_1) \quad qt_2 = \text{fresh}(t_2) \]

\[G, f : (qt_1 \rightarrow^Q qt_2, v), x : qt_1 \mid\vdash e : qt_2' \quad qt_2' \leq qt_2 \]

\[v = \text{free vars of } G \]

\[G \mid\vdash \text{fun } f^Q (x : t_1) : t_2 = e : (qt_1 \rightarrow^Q qt_2, v) \]}
Typing Rules, Fixed

- Add self-loops at instantiation

\[(q_t, v) = G(f) \quad q_t' = \text{fresh}(q_t) \quad q_t \leq (+i) q_t' \]
\[v \leq (+i) v \quad v \leq (-i) v\]

\[G \vdash f_i : q_t'\]
Efficiency

- Constraint generation yields $O(n)$ constraints
 - Same as before
 - Important for scalability

- Context-free language reachability is $O(n^3)$
 - But a few tricks make it practical (not much slowdown in analysis times)

- For more details, see
 - Rehof + Fahndrich, POPL’01
Security via Type Qualifiers: The Icky Stuff in C
Introduction

• That’s all the theory behind this system
 - More complicated system: flow-sensitive qualifiers
 - Not going to cover that here
 • (Haven’t applied it to security)

• Suppose we want to apply this to a language like C
 - It doesn’t quite look like MinML!
Local Variables in C

• The first (easiest) problem: C doesn’t use `ref`
 - It has `malloc` for memory on the heap
 - But local variables on the stack are also updateable:
    ```c
    void foo(int x) {
        int y;
        y = x + 3;
        y++;
        x = 42;
    }
    ```

• The C types aren’t quite enough
 - 3: `int`, but can’t update 3!
L-Types and R-Types

• *C* hides important information:
 - Variables behave different in l- and r-positions
 • *l* = left-hand-side of assignment, *r* = rhs
 - On lhs of assignment, *x* refers to *location x*
 - On rhs of assignment, *x* refers to *contents of location x*
Mapping to MinML

• Variables will have ref types:
 - \(x : \text{ref}^Q \text{<contents type>} \)
 - Parameters as well, but r-types in fn sigs

• On rhs of assignment, add deref of variables

```c
void foo(int x) {
    int y;
    y = x + 3;
    y++;
    x = 42;
}
```
Multiple Files

- Most applications have multiple source code files
- If we do inference on one file without the others, won’t get complete information:

```c
extern int t;
x = t;
$tainted int t = 0;
```

- Problem: In left file, we’re assuming t may have any qualifier (we make a fresh variable)
Multiple Files: Solution #1

• Don’t analyze programs with multiple files!

• Can use CIL merger from Necula to turn a multi-file app into a single-file app
 - E.g., I have a merged version of the Linux kernel, 470432 lines

• Problem: Want to present results to user
 - Hard to map information back to original source
Multiple Files: Solution #2

- Make conservative assumptions about missing files
 - E.g., anything globally exposed may be tainted

- Problem: Very conservative
 - Going to be hard to infer useful types
Multiple Files: Solution #3

• Give tool all files at same time
 – Whole-program analysis

• Include files that give types to library functions
 – In CQual, we have prelude.cq

• Unify (or just equate) types of globals

• Problem: Analysis really needs to scale
Structures (or Records): Scalability Issues

- One problem: Recursion
 - Do we allow qualifiers on different levels to differ?

 \[
 \text{struct list} \{
 \text{int elt;}
 \text{struct list *next;}
 \}
 \]
 - Our choice: no (we don’t want to do shape analysis)
Structures: Scalability Issues

• Natural design point: All instances of the same `struct` share the same qualifiers

• This is what we used to do
 - Worked pretty well, especially for format-string vulnerabilities
 - Scales well to large programs (linear in program size)

• Fell down for user/kernel pointers
 - Not precise enough
Structures: Scalability Issues

• Second problem: Multiple Instances
 - Naïvely, each time we see
    ```c
    struct inode x;
    ```
 we’d like to make a copy of the type `struct inode
 with fresh qualifiers
 - Structure types in C programs are often long
 • `struct inode` in the Linux kernel has 41 fields!
 • Often contain lots of nested structs
 - This won’t scale!
Multiple Structure Instances

• Instantiate `struct` types lazily
 - When we see
    ```
    struct inode x;
    ```
 we make an empty record type for `x` with a pointer to type `struct inode`
 - Each time we access a field `f` of `x`, we add fresh qualifiers for `f` to `x`’s type (if not already there)
 - When two instances of the same `struct` meet, we unify their records
 • This is a heuristic we’ve found is acceptable
Subtyping Under Pointer Types

- Recall we argued that an updateable reference behaves like an object with get and set operations

- Results in this rule:

 \[
 Q \leq Q' \quad qt \leq qt' \quad qt' \leq qt \\
 \text{ref}^Q qt \leq \text{ref}^Q' qt'
 \]

- What if we can’t write through reference?
Subtyping Under Pointer Types

• C has a type qualifier `const`
 - If you declare `const int *x`, then `*x = …` not allowed
• So `const` pointers don’t have “get” method
 - Can treat `ref` as covariant

\[
\begin{align*}
Q \leq Q' & \quad qt \leq qt' & \quad \text{const} \leq Q' \\
\text{ref}^Q qt & \leq \text{ref}^Q' qt'
\end{align*}
\]
Subtyping Under Pointer Types

- Turns out this is very useful
 - We’re tracking taintedness of strings
 - Many functions read strings without changing their contents
 - Lots of use of `const` + opportunity to add it
Presenting Inference Results
Type Casts
Experiment: Format String Vulnerabilities

• Analyzed 10 popular unix daemon programs
 - Annotations shared across applications
 • One annotated header file for standard libraries
 • Includes annotations for polymorphism
 - Critical to practical usability

• Found several known vulnerabilities
 - Including ones we didn’t know about

• User interface critical
Results: Format String Vulnerabilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Warn</th>
<th>Bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>identd-1.0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mingetty-0.9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bftpd-1.0.11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>muh-2.05d</td>
<td>2</td>
<td>~2</td>
</tr>
<tr>
<td>cfengine-1.5.4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>imapd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ipopd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mars_nwe-0.99</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>apache-1.3.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>openssh-2.3.0p1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Experiment: User/kernel Vulnerabilities (Johnson + Wagner 04)

- In the Linux kernel, the kernel and user/mode programs share address space

<table>
<thead>
<tr>
<th></th>
<th>4GB</th>
<th>3GB</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>user</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unmapped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>user</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The top 1GB is reserved for the kernel
- When the kernel runs, it doesn’t need to change VM mappings
 - Just enable access to top 1GB
 - When kernel returns, prevent access to top 1GB
Tradeoffs of This Memory Model

• Pros:
 - Not a lot of overhead
 - Kernel has direct access to user space

• Cons:
 - Leaves the door open to attacks from untrusted users
 - A pain for programmers to put in checks
An Attack

• Suppose we add two new system calls
  ```c
  int x;
  void sys_setint(int *p) { memcpy(&x, p, sizeof(x)); }
  void sys_getint(int *p) { memcpy(p, &x, sizeof(x)); }  
  ```

• Suppose a user calls `getint(buf)`
 - Well-behaved program: `buf` points to user space
 - Malicious program: `buf` points to unmapped memory
 - Malicious program: `buf` points to kernel memory
 • We’ve just written to kernel space! Oops!
Another Attack

• Can we compromise security with \texttt{setint(buf)}?
 - What if \texttt{buf} points to private kernel data?
 • E.g., file buffers
 - Result can be read with \texttt{getint}
The Solution: copy_from_user, copy_to_user

• Our example should be written
  ```c
  int x;
  void sys_setint(int *p) { copy_from_user(&x, p, sizeof(x)); } 
  void sys_getint(int *p) { copy_to_user(p, &x, sizeof(x)); } 
  ```

• These perform the required safety checks
 - Return number of bytes that couldn’t be copied
 - from_user pads destination with 0’s if couldn’t copy
It’s Easy to Forget These

• Pointers to kernel and user space look the same
 - That’s part of the point of the design
• Linux 2.4.20 has 129 syscalls with pointers to user space
 - All 129 of those need to use copy_from/to
 - The ioctl implementation passes user pointers to device drivers (without sanitizing them first)
• The result: Hundreds of copy_from/to
 - One (small) kernel version: 389 from, 428 to
 - And there’s no checking
User/Kernel Type Qualifiers

• We can use type qualifiers to distinguish the two kinds of pointers
 - `kernel` -- This pointer is under kernel control
 - `user` -- This pointer is under user control

• Subtyping `kernel < user`
 - It turns out `copy_from,copy_to` can accept pointers to kernel space where they expect pointers to user space
Type Signatures

- We add signatures for the appropriate fns:

  ```c
  int copy_from_user(void *kernel to,
                    void *user from, int len)
  
  int memcpy(void *kernel to,
             void *kernel from, int len)
  
  int x;
  void sys_setint(int *user p) {
    copy_from_user(&x, p, sizeof(x));
  }
  void sys_getint(int *user p) {
    memcpy(p, &x, sizeof(x));
  }
  ```

Lives in kernel

OK OK Error
Qualifiers and Type Structure

• Consider the following example:
  ```c
  void ioctl(void *user arg) {
    struct cmd { char *datap; } c;
    copy_from_user(&c, arg, sizeof©);
    c.datap[0] = 0;    // not a good idea
  }
  ```

• The pointer `arg` comes from the user
 - So `datap` in `c` also comes from the user
 - We shouldn’t dereference it without a check
Well-Formedness Constraints

• Simpler example

 char **user p;
 • Pointer p is under user control
 • Therefore so is *p

• We want a rule like:
 - In type $\text{ref}^{\text{user}} (Q s)$, it must be that $Q \leq \text{user}$
 - This is a well-formedness condition on types
Well-Formedness Constraints

• As a type rule

\[\frac{\text{--wf (Q's)}}{\text{Q' } \leq Q} \]
\[\text{--wf ref}^Q (Q's) \]

- We implicitly require all types to be well-formed

• But what about other qualifiers?
 - Not all qualifiers have these structural constraints
 - Or maybe other quals want \(Q \leq Q' \)
Well-Formedness Constraints

• Use conditional constraints

\[
\text{|--wf \,(Q \text{'s) \quad Q \leq \text{user} \implies Q' \leq \text{user}}
\]
\[
\text{|--wf \,ref^Q (Q \text{'s)}}
\]

 - “If Q must be \text{user}, then Q’ must be also”

• Specify on a per-qualifier level whether to generate this constraint
 - Not hard to add to constraint resolution
Well-Formedness Constraints

• Similar constraints for \texttt{struct} types

\[
\text{For all } i, \quad \vdash \text{wf} \ (Q_i \ s_i) \quad Q \leq \text{user} \implies Q_i \leq \text{user}
\]
\[
\vdash \text{struct}^Q (Q_1 \ s_1, \ldots, Q_n \ s_n)
\]

- Again, can specify this per-qualifier
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
...case I2C_RDWR:
    if (copy_from_user(&rdwr_arg,
                       (struct i2c_rdwr_iotcl_data *) arg,
                       sizeof(rdwr_arg)))
        return -EFAULT;
    for (i = 0; i < rdwr_arg.nmsgs; i++) {
        if (copy_from_user(rdwr_pa[i].buf,
                           rdwr_arg.msgs[i].buf,
                           rdwr_pa[i].len)) {
            res = -EFAULT; break;
        }
    }
```
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg, 
                          (struct i2c_rdwr_iotcl_data *) arg, 
                          sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf, 
                               rdwr_argmsgs[i].buf, 
                               rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
```
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg)
{
  ...case I2C_RDWR:
    if (copy_from_user(&rdwr_arg,
                       (struct i2c_rdwr_iotcl_data *) arg,
                       sizeof(rdwr_arg)))
      return -EFAULT;
    for (i = 0; i < rdwr_arg.nmsgs; i++) {
      if (copy_from_user(rdwr_pa[i].buf,
                         rdwr_arg.msgs[i].buf,
                         rdwr_pa[i].len)) {
        res = -EFAULT; break;
      }
    }
```

```c
ten user
```

```c
OK
```

```c
user
```
A Tricky Example

```c
int copy_from_user(<kernel>, <user>, <size>);
int i2cdev_ioctl(struct inode *inode, struct file *file, unsigned cmd,
                 unsigned long arg) {
    ...case I2C_RDWR:
        if (copy_from_user(&rdwr_arg,
               (struct i2c_rdwr_iotcl_data *) arg,
               sizeof(rdwr_arg)))
            return -EFAULT;
        for (i = 0; i < rdwr_arg.nmsgs; i++) {
            if (copy_from_user(rdwr_pa[i].buf,
                   rdwr_argmsgs[i].buf,
                   rdwr_pa[i].len)) {
                res = -EFAULT; break;
            }
        }
```
Experimental Results

- Ran on two Linux kernels
 - 2.4.20 -- 11 bugs found
 - 2.4.23 -- 10 bugs found
- Needed to add 245 annotations
 - Copy_from/to, kmalloc, kfree, ...
 - All Linux syscalls take user args (221 calls)
 - Could have be done automagically (All begin with sys_)
- Ran both single file (unsound) and whole-kernel
 - Disabled subtyping for single file analysis
More Detailed Results

- 2.4.20, full config, single file
 - 512 raw warnings, 275 unique, 7 exploitable bugs
 - Unique = combine msgs for user qual from same line
- 2.4.23, full config, single file
 - 571 raw warnings, 264 unique, 6 exploitable bugs
- 2.4.23, default config, single file
 - 171 raw warnings, 76 unique, 1 exploitable bug
- 2.4.23, default config, whole kernel
 - 227 raw warnings, 53 unique, 4 exploitable bugs
Observations

• Quite a few false positives
 - Large code base magnifies false positive rate

• Several bugs persisted through a few kernels
 - 8 bugs found in 2.4.23 that persisted to 2.5.63
 - An unsound tool, MECA, found 2 of 8 bugs
 - ==> Soundness matters!
Observations

• Of 11 bugs in 2.4.23...
 - 9 are in device drivers
 - Good place to look for bugs!
 - Note: errors found in “core” device drivers
 • (4 bugs in PCMCIA subsystem)

• Lots of churn between kernel versions
 - Between 2.4.20 and 2.4.23
 • 7 bugs fixed
 • 5 more introduced
Conclusion

• Type qualifiers are specifications that...
 – Programmers will accept
 • Lightweight
 – Scale to large programs
 – Solve many different problems

• General type qualifiers now available for Java
 – See work by Ernst et al on pluggable types
 • Applying to information flow properties