Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Query Processing

- Assume single-user, single-threaded
 - Concurrency managed by lower layers

- Steps:
 - Parsing: attribute references, syntax etc...
 - Catalog stored as “denormalized” tables
 - Rewriting:
 - Views, constants, logical rewrites (transitive predicates, true/false predicates), semantic (using constraints), subquery flattening
 - Optimizer – Later
 - Executor: Next
Figure 2. Query processing steps.
Query Plans

- Lot of confusion between left-deep vs right-deep
 - Careful when reading some of the early work
 - Think about hash joins
 - One of them builds hash tables on intermediate relations, one only on base tables

![Query Plan Diagram]

Figure 4. Left-deep, bushy, and right-deep plans.
Options for query processing

- Materialize the results after each operator
- Each operator runs in a separate process; use interprocess communication
 - Use "queues" in between the operators to pass data
 - Too many context switches, but better parallelism
 - See the River system (Berkeley)
- Use threads?
 - Issues with blocking for I/Os
- Translation programs
 - Translate the plan into a single iterative program
 - Probably not feasible given the complexity of operators
- Iterator model
 - Single process/thread
Each operator implementation supports:
- `init/open()`
 - Typically no data involved (although Graefe’s examples do that)
- `get_next()`
 - Return the next output tuple; may call `get_next()` on children
 - First call typically builds hash tables, sorted runs etc...
- `end/close()`
- `rescan()`
 - Often needed (e.g., for nested loops)
Table 1. Examples of Iterator Functions

<table>
<thead>
<tr>
<th>Iterator</th>
<th>Open</th>
<th>Next</th>
<th>Close</th>
<th>Local State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>open input</td>
<td>call next on input; format the item on screen</td>
<td>close input</td>
<td></td>
</tr>
<tr>
<td>Scan</td>
<td>open file</td>
<td>read next item</td>
<td>close file</td>
<td>open file descriptor</td>
</tr>
<tr>
<td>Select</td>
<td>open input</td>
<td>call next on input until an item qualifies</td>
<td>close input</td>
<td></td>
</tr>
<tr>
<td>Hash join (without overflow resolution)</td>
<td>allocate hash directory; open left "build" input; build hash table calling next on build input; close build input; open right "probe" input</td>
<td>call next on probe input until a match is found</td>
<td>close probe input; deallocate hash directory</td>
<td>hash directory</td>
</tr>
<tr>
<td>Merge-Join (without duplicates)</td>
<td>open both inputs</td>
<td>get next item from input with smaller key until a match is found</td>
<td>close both inputs</td>
<td></td>
</tr>
<tr>
<td>Sort</td>
<td>open input; build all initial run files calling next on input; close input; merge run files until only one merge step is left</td>
<td>determine next output item; read new item from the correct run file</td>
<td>destroy remaining run files</td>
<td>merge heap, open file descriptors for run files</td>
</tr>
</tbody>
</table>
DAGs: use "split" operator

- Multiple consumers – buffer each input tuple till all consumers have seen it
- Can use a bitmap for this purpose
- Only need to spool to disks if consumer rates vary too much

No parallelism – what about multi-core?

- Also, shared-nothing parallel databases (i.e., no shared memory)?

Use special "Exchange" operators
Figure 26. Operator model of parallelization.
Two key strategies underlying almost all operators

Critical differences:
- Hashing can be pipelined vs sorting is *blocking*
- Sorting-based operators produce output in *sorted order*

Can be seen as duals of each other
- Very nice observations in the paper on this topic
External Sorting

Basic idea:
- Create sorted "runs"
- Merge the sorted "runs"

How to create runs?
- (1) Read as much as memory; use quicksort
- (2) Use replacement selection
 - Option 2 much better – produces runs that are much larger, and hence smaller number of runs
 - If the input almost sorted, can get away with just one run
Graefe has a survey on this topic alone

Some interesting points:

- Need to worry about random vs sequential I/Os
 - In case of sorting: when merging, random I/O is required
- General technique: read many blocks at once
 - For sorting: that reduces the number of runs you can merge at once
 - However in some cases, that may be better since random I/O so much slower
 - Probably not a big deal now-a-days
- Hybrid hash seems superior when the amount of data just larger than memory
- However "reverse" writes help (can be explicitly coded)
 - Write the run in reverse order
 - The tail of the run will be in the buffer when merging so avoid that I/O
Hashing

- Very good option if the table fits in memory
 - For hash joins, only the smaller input needs to fit in memory
- If not, then need to do in multiple phases
- Hybrid hashing
 - Optimal when the (build) relation just larger than memory
 - Can keep most of the hash table in memory, and spill some to disk
- Some issues to keep in mind
 - Quality of hash functions
 - Must deal with skew
Disk Access

- **Sequential Scan**
 - Push down selections and apply as soon as possible
 - Also push down projections
 - Interesting issues in choosing the order in which to apply selection predicates

- **Associate (Index) Access**
 - B+-Tree indexes very widely used
 - Data warehouses often build them on every column
 - Other indexes not typically supported in database systems even today
 - Some spatial-oriented databases support R-Trees or variants
 - Perhaps the key reason is that the complexity is not seen as worth the effort
 - Especially complexity of dealing with concurrency and recovery issues
Index-only Scans

- Often we don’t need to retrieve the records, the lowest level of index has sufficient information

Index-ANDING and Index-ORING

- Important optimizations
- e.g., imagine two predicates on a relation, both on columns with indexes
- Can get a list of RID (record ids) from both of them, intersect (or union), sort, and retrieve the tuples in one pass
What happens if the underlying storage device is not a standard disk?

RAID
- Very commonly used in large server deployments
- Many issues with use in databases
- The costs of reads and writes are different
- Failure behavior is different from standard disks (since RAID automatically recovers)
- Using write caches can be problems
- Writing "parity" blocks not required for temporary data (e.g., sorted runs etc)

Many of these hidden underneath an abstraction layer
Database vendors must deal with this
Flash?
Selections: Usually pushed down if possible
- SARGABLE predicates
- Advantages in not doing so (for expensive predicates)

Project
- If no duplicate elimination, then trivial
- If duplicate elimination, can use sorting (preferred) or hashing
- Note that: this suggests that sort-merge joins may be preferable as the child operator
- Decision made by the optimizer ("interesting orders")
Aggregates and Group by (usually together)

- Distributive (MAX, MIN, COUNT, SUM): Constant state
- Algebraic (AVERAGE): Can use COUNT and SUM
- Holistic (MEDIAN, QUANTILE): May need to gather the whole input

Typically implemented using sorting, sometimes hashing

PostgreSQL allows defining user-defined aggregates:

- **User-defined Aggregates in PostgreSQL**
 - Basically need to define an “accumulator” function..
 - Take in one tuple at a time (get_next())
 - Eventually produce the aggregate (one by one)
Executor: Operators

Joins

- Equijoin (natural join): Nested loops, Index nested loops, hash join (classic, GRACE, hybrid), merge join
- Non-equijoins?
 - Sort-merge joins in some cases (e.g. ABS(R.a - S.b) < 5)
 - Index nested loops in some cases (e.g. index on R.a, may use for R.a < S.a)
 - Nested loops otherwise (always works)

Join variants: Outerjoins, semijoins, Anti-joins, etc...

- Usually same algorithms as above, with minor modifications (may even be an "if" in the code)
Executor: Operators

<table>
<thead>
<tr>
<th>Output</th>
<th>Match on all Attributes</th>
<th>Match on some Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Difference</td>
<td>Anti-semi-join</td>
</tr>
<tr>
<td>B</td>
<td>Intersection</td>
<td>Join, semi-join</td>
</tr>
<tr>
<td>C</td>
<td>Difference</td>
<td>Anti-semi-join</td>
</tr>
<tr>
<td>A, B</td>
<td>Symmetric difference</td>
<td>Anti-join</td>
</tr>
<tr>
<td>A, C</td>
<td>Union</td>
<td>Symmetric outer join</td>
</tr>
<tr>
<td>B, C</td>
<td></td>
<td>Right outer join</td>
</tr>
<tr>
<td>A, B, C</td>
<td></td>
<td>Symmetric outer join</td>
</tr>
</tbody>
</table>
Set operators: Intersection, Union, Difference etc..
- Variants of join operators (different logic based on duplicate eliminate or not)
- Note that: SQL is bag algebra

Others?
- Top-K, CUBE etc...
- List goes on
Much commonality between operators

Usually a smaller set of Physical Operators
 e.g. TEMP is a materialization operator: Reads all tuples from the child operator and stores them somewhere
 by repeatedly issuing get_next()

Similarly, HASH, SORT etc..

See An overview of DB2 Optimizer for more details
Executor: Operators

- Blocking operators vs Pipelining operators
 - Important: dictates memory use, time to first tuple
 - TEMP, SORT are blocking
 - All operators in a pipeline must be in memory, so higher memory requirements
 - Some operators are naturally blocking
 - DISTINCT (duplicate elimination)
 - AGGREGATES (can’t really produce a COUNT without seeing all input)
 - Increasingly prefer pipelining operators (larger memories)
Executor

- "get_next()" iterator model
 - Narrow interface between iterators
 - Can be implemented independently
 - Assumes non-blocking-I/O

- Memory
 - Usually managed carefully: swapping not good
 - Sorting can exploit the memory naturally to the fullest
 - Hashing needs careful partitioning

- Some low-level details
 - Tuple-descriptors
 - Very carefully allocated memory slots
 - "avoid in-memory copies"
 - Pin and unpin
Commercial systems (also PostgreSQL) use context-based memory allocators.

Each operator creates its own context:
- Allocates memory in that context (through special calls: "pmalloc" for PostgreSQL)
- Entire context deallocated at once (after finished)
- Essentially a custom garbage collector

Data movement between operators:
- Each operator typically has a few "slots" it uses for data movement that are shared
- When it is called by a parent operator, the next tuple is copied into a shared slot
- Thus, avoid creation of new objects

Any long-lived data (e.g., hash tables) copied into operator contexts.
Data Warehouses

- A (usually) stand-alone system that integrates data from everywhere
 - Read-only, updated at night
 - Geared toward business analytics, data mining etc...
- Heavily used and heavily optimized
 1. Materialized views (summary tables, data cubes)
 2. New types of indexes
 3. New join techniques geared toward “star” (or “snowflake”) schemas
 4. Compressed storage techniques
- Key observation: Read-only, so updating not an issue
Data Warehouses: Overview

OLAP operations include rollup (increasing the level of aggregation) and drill-down (decreasing the level of aggregation). There is more to building and maintaining a data warehouse than selecting an OLAP server and defining a schema and data structures (e.g., arrays) and implement the OLAP data model and operations. In contrast, multidimensional OLAP (MOLAP) servers are implemented the multidimensional data model and operations. It includes tools for extracting data from multiple operational databases and external sources; for cleaning, transforming and integrating this data; for loading data into the data warehouse; and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse; and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse.

There is more to building and maintaining a data warehouse than selecting an OLAP server and defining a schema and data structures (e.g., arrays) and implement the OLAP data model and operations. In contrast, multidimensional OLAP (MOLAP) servers are implemented the multidimensional data model and operations. It includes tools for extracting data from multiple operational databases and external sources; for cleaning, transforming and integrating this data; for loading data into the data warehouse; and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse; and for periodically refreshing the warehouse to reflect updates at the sources and to purge data from the warehouse.

Data warehouses might be implemented on standard or commercial DBMSs targeted for OLTP. It is for all these reasons that data warehouses are implemented separately from operational databases.

There still are many open research problems. We conclude in Section 8 with a brief mention of these issues. Codd, et al. defines twelve rules for OLAP products. Finally, The OLAP Council is a good source of information on standardization efforts across the industry, and a paper by Codd, et al. at recent issues of trade magazines such as Datamation, Databased, Database Programming and DesignMonitoring & AdministrationRepository

External sources

Operational dbs

Data sources

Data Warehouse

Data Marts

OLAP Servers

Serves

Analysis

Query/Reporting

Data Mining

Tools

Monitoring & Administration

Metadata Repository

Figure 1. Data Warehousing Architecture

Figure: Overview (From Chaudhuri, Dayal; SIGMOD Rec., 1997)
Data Warehouses

- Extract-Transform-Load (ETL)
 - Data cleaning, auditing, integrity constraints
 - Semantic heterogeniety
 - Issues like entity resolution, schema mapping/matching, cleaning etc..

- Load/Refresh:
 - Typically done periodically
 - Batch loading, so can heavily optimize the indexes
 - E.g. If using a B+-tree, bulk-loading can result in much better indexes, than inserting one at a time
 - Refresh:
 - Usually done incrementally, at night or something

- Real-time analysis? Typically not done today
The multidimensional data model grew out of the view of business data popularized by PC spreadsheet programs that were extensively used by business analysts. The spreadsheet applications often use raw data access tools and database server. In addition, there are query environments that provide its multidimensional coordinates, and stores the numeric measures for those coordinates. Each dimension uses a generated key for efficiency) to each of the dimensions and defining attributes.

Sales and defining attributes.

Data Warehouses: Star Schema

Figure 3. A Star Schema.
Data Warehouses: Snowflake Schema

Figure 4. A Snowflake Schema.

Figure: A Snowflake Schema (From Chaudhuri, Dayal; SIGMOD Record, 1997)
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations
Star and Snowflake Schemas

- The Facts table is HUGE
 - Dimension tables relatively small
- Strong key-foreign key dependencies
 - Each fact table tuple joins with exactly one tuple from each dimension table
 - Critical in optimizations
- Many queries are of the form:
 - Join the Facts table with some of the dimension tables
 - Selections on the dimension table attributes (e.g. state = 'MD')
 - Possibly selection on the fact table
 - Group by on some of the dimension table attributes (e.g. ProdName)
 - Aggregate on a main Facts table attribute (e.g. quantity)
Disk Access: Bit-map indexes

- Variant Indexes; O’Neil, Quass; SIGMOD’97
- Specialized indexes for supporting summary aggregate queries
- Different types of indexes:
 - Traditional Value-List Indexes
 - Bitmap Indexes
 - Projection Indexes
 - Very similar to Column-based storage (much research last few years)
 - Bit-sliced Indexes
 - Join Indexes
- Key observation: Read-only database, so can build as many indexes as you want
Key idea: Given a property over a domain, the following two are interchangeable and complementary:

- a list of values
- a bitmap over the domain
Key idea: Given a **property** over a domain, the following two are interchangeable and complementary
- a **list of values**
- a **bitmap** over the domain

In our case:
- Domain: The set of all RIDs
- Property: A predicate \(R.a = '\text{Sports}' \)

If the number of RID that satisfy the property is:
- small: store as a list of RIDs
- large: store as a bitmap over the RIDs
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions

So

Each B+-Tree page contains a portion of the bitmap over the RIDs

If the number of 1's is small, convert to an RID-list. The tipping point is when the number of 1's is < 1/32 of the size. At that point, the RID-list exactly fits in the disk page (48000/32 = 1500, 1500 * 4 = 6K). This is always true regardless of the page size. Segmentation also helps with space storage... if an entire segment is all 0's, don't store it.
Each disk page can store 48K bits, so must partition the Facts table into 48K row partitions

So

- Each B+-Tree page contains a portion of the bitmap over the RIDs

If the number of 1’s is small, convert to an RID-list

- The tipping point is when the number of 1’s is < 1/32 of the size.
- At that point, the RID-list exactly fits in the disk page
- \(\frac{48000}{32} = 1500, 1500 \times 4 = 6K \)
- This is always true regardless of the page size

Segmentation also helps with space storage... if an entire segment is all 0’s, don’t store it
Value-List/Bitmap Index: Queries

- Selections on the table return bitmaps
 - AND, OR, NOT very fast on bitmaps
 - Result called a Foundset: B_f (the domain is the Facts Table)

- Next step: Aggregate (recall almost all queries compute aggregates)
 - Can perform directly on the bitmap in some cases (COUNT)
 - Otherwise use projection indexes
 - OR use a bit-sliced index
shcount: count the number of ones in the binary representation

Algorithm 2.1. Performing COUNT with a Bitmap

```c
/* Assume B1[ ] is a short int array overlaying a Foundset Bitmap */
count = 0;
for (i = 0; i < SHNUM; i++)
    count += shcount[B1[i]];
/* Add count of bits for next short int */
```

Figure: Bitmap Index
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Overview

- Traditional databases row-oriented
 - Fast for writes, but not for reads
 - Redundant columns accessed
 - Index-only scans help but are not sufficient

- Column-stores
 - Store data in columnar fashion
 - Better I/O and CPU efficiency (fewer cache misses)
 - Tuple reconstructions costs quite high
 - Better for scan queries (i.e., queries that don’t focus on just a few tuples)
 - Big push toward this in recent years with increasing trend toward data warehousing and analytics
 - Many commercial systems support some mix of columnar- and row-oriented storage

Very nice overview article by Dan Abadi
C-Store

- Commercialized as Vertica (recently acquired by HP)
- Key features (from VLDB 2005 paper – may have changed since):
 - Hybrid architecture: A Write Store (WS) optimized for inserts, and a Read Store (RS) optimized for querying
 - Data moved from WS to RS in a periodic fashion
 - Columns stored in possibly different sort orders
 - A single column may be stored multiple times in different sort orders
 - For read efficiency
 - Heavy use of compression
 - Designed for a shared-nothing environment
 - High availability through use of overlapping projections
 - Use of snapshot isolation to avoid 2PC and locking
"Projection" defined by:

- An anchor table
- A list of attributes from anchor table
- A list of attributes from other tables such that the attribute values are uniquely defined
 - Through a sequence of key-foreign key joins
- A sort order

No. of tuples in a projection = No. of tuples in the anchor table

Projections may be horizontally partitioned into segments based on the sort key
Example:

\(EMP(name, \text{age}, \text{salary}, \text{dept}), \ DEPT(dname, \text{floor}) \)

Possible list of projections:

- \(EMP1(name, \text{age} | \text{age}) \) – \text{age is the sort key}
- \(EMP2(\text{dept}, \text{age}, \ DEPT.\text{floor} | \ DEPT.\text{floor}) \)
- \(\text{DEPT.floor uniquely associated with a tuple from the anchor table} \)
- \(EMP3(name, \text{salary} | \text{salary}) \)
- \(\text{DEPT1(dname, floor} | \text{floor}) \)
Need mappings between different projections to be able to construct original rows
 Called "join indexes"

Late materialization
 At some point, you must stitch the columns of a single table together
 Try to postpone because that operation is expensive
 e.g., apply selection predicates first, and then only constructs tuples that match
C-Store

- Need mappings between different projections to be able to construct original rows
 - Called "join indexes"

- Late materialization
 - At some point, you must stitch the columns of a single table together
 - Try to postpone because that operation is expensive
 - e.g., apply selection predicates first, and then only constructs tuples that match

- Block iteration
 - As opposed to get_next() interface, pass entire block of tuples between operators
 - Avoids per-tuple overheads
 - Can be done in row-stores as well, but easier in column-stores
Comparing column-stores to row-stores

Ways we can try to get column-store benefits in a row-store

- Vertically partition each table into a collection of two-column tables: (key, attribute)
 - Using a synthetic position attribute instead of key may be better
- Build indexes on every attribute and use index-only scans
 - Used aggressively in commercial systems, although PostgreSQL doesn’t support them
- Aggressive use of materialized views
 - Need to know the query workload

However, results indicate the overheads of all these approaches are too high
Outline

1 Query Processing
 - Iterator Model
2 Data Warehouses
3 Column Stores vs Row Stores
4 **Query Optimization**
5 Adaptive Query Processing
6 Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7 Sketches
Goal: Given a SQL query, find the best physical operator tree to execute the query

Problems:

- Huge plan space
 - More importantly, cheapest plan orders of magnitude cheaper than worst plans
 - Typical compromise: avoid really bad plans
- Complex operators/semantics etc
 - \((R \text{ outerjoin } S) \text{ join } T \neq R \text{ outerjoin } (S \text{ join } T)\)
Query Compilation: Steps

- Parsing: analyze SQL query, detect syntax errors, create internal query representation
- Semantic checking:
 - Validate SQL statement, view analysis, incorporate constraints/triggers etc
- Query rewrite: Modify query to improve performance
- Optimization
- Code generation
Query Rewrite

- Goal: more latitude for optimizer; more efficient processing
- Typically done using a rule-based approach
 - IBM Query Graph Model paper has details on how it is done
- Examples:
 - Original: select distinct custkey, name from TPCD.CUSTOMER
 - Rewritten: select custkey, name from TPCD.CUSTOMER
 - Why? custkey is a key
Original:
- SELECT ps.* FROM partsupp ps
- WHERE ps.ps_partkey IN (SELECT p_partkey FROM tpcd.parts WHERE p_name LIKE 'forest%');

Rewritten:
- SELECT ps.* FROM parts, partsupp ps
- WHERE ps.ps_partkey = p_partkey AND p_name LIKE 'forest%';

Predicate translation:
- WHERE NOT(COL1 = 10 OR COL2 > 3) → WHERE COL1 <> 10 AND COL2 <= 3
Must be careful with distincts and "nulls"

Original:
- SELECT Dept.Name FROM Dept
- WHERE Dept.num-of-machines >=
- (SELECT Count(EMP.*) FROM Emp WHERE Dept.name = Emp.Dept_name)

Rewritten:
- SELECT Dept.Name FROM Dept Join Emp
 GROUP BY Dept.name
 HAVING Dept.num-of-machines < Count(EMP.*)

Must use a left-outer-join
- Otherwise a dept with no employees may cause problems
Elements of Query Compilation

- **Parsing**
 - Analyze "text" of SQL query
 - Detect syntax errors
 - Create internal query representation

- **Semantic Checking**
 - Validate SQL statement
 - View analysis
 - Incorporate constraints, triggers, etc.

- **Query Optimization**
 - Modify query to improve performance (Query Rewrite)
 - Choose the most efficient "access plan" (Query Optimization)

- **Code Generation**
 - Generate code that is
 - executable
 - efficient
 - re-locatable
Query Graph Model (QGM)

- Captures the entire semantics of an SQL query to be compiled
- "Headquarters" for all knowledge about compiling a query
- Represents internally that query's:
 - Entities (e.g. tables, columns, predicates,...)
 - Relationships (e.g. "ranges-over", "contains", ...)
- Has its own schema
 - Entity-Relationship (ER) model
- Visualized as a Data Flow Model
 - Boxes (nodes) represent table operations
 - Rows flow through the graph
- Implemented as a C++ library
 - Facilitates construction, use, and destruction of QGM entities
- Designed for flexibility
 - Easy extension of SQL Language (i.e. SELECT over IUDs)

Example QGM for a Query

```
SELECT DISTINCT q1.partno, q1.descr, q2.suppno
FROM inventory q1, quotations q2
WHERE q1.partno = q2.partno
    AND q1.descr = 'engine'
    AND q2.price <= ALL
        ( SELECT q3.price
            FROM quotations q3
            WHERE q2.partno = q3.partno
        );
```
QGM Graph (after Semantics)

SELECT Box
distinct=ENFORCE

SELECT Box
distinct=PERMIT

quantifier

partno, desc

subquery

q2.partno=q3.partno

q2.price<=q4.price

(4)

price=q3.price

(3)

(2)

head

body

quantifier

partno, desc

inventory

quotations
What is Query Rewrite?
- Rewriting a given SQL query into a semantically equivalent form that
 - may be processed more efficiently
 - gives the Optimizer more latitude

Why?
- Same query may have multiple representations in SQL
- Complex queries often result in redundancy, especially with views
- Query generators
 - often produce suboptimal queries that don't perform well
 - don't permit "hand optimization"

Based on Starburst Query Rewrite
- Rule-based query rewrite engine
- Transforms legal QGM into more efficient QGM
- Some transformations aren't always universally applicable
- Has classes of rules
- Terminates when no rules eligible or budget exceeded

Query Rewrite - A VERY Simple Example

Original Query:

select distinct custkey, name from TPCD.CUSTOMER

After Query Rewrite:

select custkey, name from TPCD.CUSTOMER

Rationale:

custkey is unique, distinct is redundant
Query Rewrite: Subquery-to-Join Example:

■ Original Query:

```sql
SELECT ps.*
FROM tpcd.partsupp ps
WHERE ps.ps_partkey IN
  (SELECT p_partkey
   FROM tpcd.parts
   WHERE p_name LIKE 'forest%');
```

■ Rewritten Query:

```sql
SELECT ps.*
FROM parts, partsupp ps
WHERE ps.ps_partkey = p_partkey AND
  p_name LIKE 'forest%';
```

NOTE: Unlike Oracle, DB2 can do this transform, even if p_partkey is NOT a key!
Query Rewrite - Predicate Pushdown Example

- **Original query:**

  ```sql
  CREATE VIEW lineitem_group(suppkey, partkey, total)
  AS SELECT l_suppkey, l_partkey, sum(quantity)
    FROM   tpcd.lineitem
    GROUP BY l_suppkey, l_partkey;

  SELECT *
  FROM lineitem_group
  WHERE suppkey = 1234567;
  ```

- **Rewritten query:**

  ```sql
  CREATE VIEW lineitem_group(suppkey, partkey, total)
  AS SELECT l_suppkey, l_partkey, sum(quantity)
    FROM   tpcd.lineitem
    WHERE  l_suppkey = 1234567
    GROUP BY l_suppkey, l_partkey;

  SELECT *
  FROM lineitem_group;
  ```
Query Rewrite - Shared Aggregation Example

Original Query:
```
SELECT SUM(O_TOTAL_PRICE) AS OSUM,
     AVG(O_TOTAL_PRICE) AS OAVG
FROM ORDERS;
```

Rewritten Query:
```
SELECT OSUM, OSUM/OCOUNT AS OAVG
FROM (SELECT SUM(O_TOTAL_PRICE) AS OSUM,
      COUNT(O_TOTAL_PRICE) AS OCOUNT
      FROM ORDERS) AS SHARED_AGG;
```

→ Reduces query from 2 sums and 1 count to 1 sum and 1 count!
Query Rewrite - Correlated Subqueries Example

Original Query:
```
SELECT PS_SUPPLYCOST FROM PARTSUPP
WHERE PS_PARTKEY <> ALL
    (SELECT L_PARTKEY FROM LINEITEM
     WHERE PS_SUPPKEY = L_SUPPKEY)
```

Rewritten Query:
```
SELECT PS_SUPPLYCOST FROM PARTSUPP
WHERE NOT EXISTS
    (SELECT 1 FROM LINEITEM
     WHERE PS_SUPPKEY = L_SUPPKEY
       AND PS_PARTKEY = L_PARTKEY)
```

→ Pushes down predicate to enhance chances of binding partitioning key for each correlation value (here, from PARTSUPP)
Query Rewrite - Decorrelation Example

Original Query:
```sql
SELECT SUM(L_EXTENDEDPRICE)/7.0
FROM LINEITEM, PART P
WHERE P_PARTKEY = L_PARTKEY AND
  P_BRAND = 'Brand#23' AND
  P_CONTAINER = 'MED BOX' AND
  L_QUANTITY < (SELECT 0.2 * AVG(L1.L_QUANTITY)
    FROM TPCD.LINEITEM L1
    WHERE L1.L_PARTKEY = P.P_PARTKEY)
```

Rewritten Query:
```sql
WITH GBMAGIC AS  (SELECT DISTINCT P_PARTKEY FROM PART P
                WHERE P_BRAND = 'Brand#23' AND P_CONTAINER = 'MED BOX'),
CTE AS     (SELECT 0.2*SUM(L1.L_QUANTITY)/COUNT(L1.L_QUANTITY) AS AVGL_LQUANTITY,
            P.PARTKEY FROM LINEITEM L1, GBMAGIC P
            WHERE L1.L_PARTKEY = P.P_PARTKEY GROUP BY P.PARTKEY)
SELECT SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY
FROM LINEITEM, PART P  WHERE P_PART_KEY = L_PARTKEY
AND P_BRAND = 'Brand#23' AND P_CONTAINER = 'MED_BOX'
AND L_QUANTITY < (SELECT AVGL_QUANTITY FROM CTE
                   WHERE P_PARTKEY = CTE.P_PARTKEY);
```

→ This SQL computes the avg_quantity per unique part and can then broadcast the result to all nodes containing the lineitem table.
Query Optimization

- **Heuristical approaches**
 - Perform selection early (reduce number of tuples)
 - Perform projection early (reduce number of attributes)
 - Perform most restrictive selection and join operations before other similar operations.
 - Don’t do Cartesian products

- **INGRES:**
 - Always use NL-Join (indexed inner when possible)
 - Order relations from smallest to biggest
A systematic approach

- Define a **plan space** (what solutions to consider)
- A **cost estimation technique**
- An **enumeration algorithm** to search through the plan space
Define a **plan space**
- Left-deep plans, no Cartesian products
- Nested-loops and sort-merge joins, sequential scans or index scans

A **cost estimation technique**
- Use statistics (e.g. size of index, max, min etc) or magic numbers
- Formulas for computing the costs

An **enumeration algorithm** to search through the plan space
- Dynamic programming
Aside...

- Cost metric
 - Typically a combination of CPU and I/O costs
 - The "w" parameter set to balance the two
 - Response time (useful in distributed and parallel scenarios)
 - Behaves different from the above *total work* metric
 - Time to first tuple (useful in interactive applications)
Cost metric

- Typically a combination of CPU and I/O costs
 - The "w" parameter set to balance the two
- Response time (useful in distributed and parallel scenarios)
 - Behaves different from the above *total work* metric
- Time to first tuple (useful in interactive applications)

How about a simpler metric?

- *Count the total number of intermediate tuples that would be generated*
- Independent of access methods
- Ok in some scenarios, but reasoning about indexes is key in optimization
Dynamic programming

Uses “principle of optimality”
- Bottom-up algorithm
- Compute the optimal plan(s) for each k-way join, k = 1, ..., n
 - Only $O(2^n)$ instead of $O(n!)$
- Computes plans for different “interesting orders”
 - Extended to “physical properties” later

Another way to look at it:
- Plans are not comparable if they produce results in different orders
- An instance of multi-criteria optimization
Search space

- “Bushy” plans (especially useful for parallelization)
- Cartesian products (star queries in data warehouses)
- Algebraic transformations
 - Can “group by” and “join” commute?
- More physical operators
 - Hash joins, semi-joins (crucial for distributed systems)
- Sub-query flattening, merging views
 - “Query rewrite”
- Parallel/distributed scenarios...
Statistics and cost estimation

- Optimization only as good as cost estimates
 - Optimizers not overly sensitive (± 50% probably okay)
 - Better to overestimate selectivities
- Histograms, sampling commonly used
- Correlations?
 - Ex: where model = “accord” and make = “honda”
 - Say both have selectivities 0.0001
 - Then combined selectivity is also 0.0001, not 0.0000001
- Learning from previous executions
 - Learning optimizer (LEO@IBM), SITS (MS SQL Server)
- Cost metric: Response time in parallel databases, buffer utilization...
Since then...

- Enumeration techniques
 - Bottom-up more common
 - Easier to implement, low memory footprint
 - Top-down (Volcano/Cascades/SQL Server)
 - More extensible, typically larger memory footprint etc...
 - Neither work for large number of tables
 - Randomized, genetic etc...
 - More common to use heuristics instead
 - “Parametric query optimization”
Other issues

- Non-centralized environments
 - Distributed/parallel, P2P
 - Data streams, web services
 - Sensor networks??

- User-defined functions

- Materialized views
Outline

1. Query Processing
 1. Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. **Adaptive Query Processing**
6. Data Streams
 1. Motivation
 2. Triggerman
 3. Major Concepts
 4. New Operators
 5. Eddies
7. Sketches
Adaptive Query Processing

- Why? Traditional optimization is breaking
- In traditional settings:
 - Queries over many tables
 - Unreliability of traditional cost estimation
 - Success, maturity make problems more apparent, critical
- In new environments:
 - e.g. data integration, web services, streams, P2P...
 - Unknown dynamic characteristics for data and runtime
 - Increasingly aggressive sharing of resources and computation
 - Interactivity in query processing
- Note two distinct themes lead to the same conclusion:
 - *Unknowns*: even static properties often unknown in new environments and often unknowable a priori
 - *Dynamics*: environment changes can be very high
- *Motivates intra-query adaptivity*
Some related topics

- Autonomic/self-tuning optimization
 - Chen and Roussoupolous: Adaptive selectivity estimation [SIGMOD 1994]
 - LEO (@IBM), SITS (@MSR): Learning from previous executions

- Robust/least-expected cost optimization

- Parametric optimization
 - Choose a collection of plans, each optimal for a different setting of parameters
 - Select one at the beginning of execution

- Competitive optimization
 - Start off multiple plans... kill all but one after a while

- Adaptive operators

Low-overhead, evolutionary approaches

Typically apply to non-pipelined execution

Late binding: Don’t instantiate the entire plan at start

Mid-query reoptimization: At “materialization” points, review the remaining plan and possibly re-optimize

 More recently, much work/implementation along these lines at IBM
AQP: Overview/Summary

- Low-overhead, evolutionary approaches
 - Typically apply to non-pipelined execution
 - **Late binding:** Don’t instantiate the entire plan at start
 - **Mid-query reoptimization:** At “materialization” points, review the remaining plan and possibly re-optimize
 - More recently, much work/implementation along these lines at IBM

- Pipelined execution
 - No materialization points, so the above doesn’t apply
 - The operators may contain complex states, raising correctness issues
 - **Eddies**
 - Always guarantee correct execution, but allows reordering during execution
 - Much other work in recent years (see the survey)
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Why?

Much data generated continuously (growing every day)

- Financial data
- Sensors, RFID
- Network/systems monitoring
- Video/Audio data
- etc ...
Data Streams

Why?

- Much data generated continuously (growing every day)
 - Financial data
 - Sensors, RFID
 - Network/systems monitoring
 - Video/Audio data
 - etc ...

Need to support:

- High data rates
- Real-time processing with low latencies
- Support for temporal reasoning (time-series operations)
- Data dissemination
- Distributed? (at least data generation)
- etc...
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- Probabilistic modeling; Applying financial models
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to buy
 - We don’t even know how to specify these multimedia data?

- Online object detection, activity detection
 - Correlating events from different streams
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

Probabilistic modeling; Applying financial models
- Infer hidden variables
- Remove noise (from measured readings)
- Do complex analysis to decide whether to buy

We don’t even know how to specify these Multimedia data?
- Online object detection, activity detection
- Correlating events from different streams
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- Probabilistic modeling; Applying financial models
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to buy
 - We don’t even know how to specify these
Examples of Tasks

- **Continuous** (SQL) queries
 - E.g. moving average over last hour every 10 mins
 - SQL extended to support “windows” over streams
 - Proposed extensions: SEQUENCE, CQL, StreamSQL

- Pattern recognition
 - Alert me when: A, then B within 10 mins
 - How to specify? StreamSQL has some support

- Probabilistic modeling; Applying financial models
 - Infer hidden variables
 - Remove noise (from measured readings)
 - Do complex analysis to decide whether to *buy*
 - We don’t even know how to specify these

- Multimedia data?
 - Online object detection, activity detection
 - Correlating events from different streams
Data Streams

- Use traditional DBMS?
- Consider simplest case:
 - Report moving average over last hour every 10 minutes
 - 1. Insert all new items into database
 - 2. Execute the query every 10 minutes

Not easily generalizable to other tasks
E.g. “alert me the moment moving average > 100”?
Typically 1000's of such continuous queries
Even for one query, too slow and inefficient
Doesn't reuse work from previous execution
Application-level modules typically used for complex tasks
Data Streams

- Use traditional DBMS?
- Consider simplest case:
 - Report moving average over last hour every 10 minutes
 - 1. Insert all new items into database
 - 2. Execute the query every 10 minutes
- Not easily generalizable to other tasks
 - E.g. “alert me the moment moving average > 100”?
- Typically 1000’s of such continuous queries
- Even for one query, too slow and inefficient
 - Doesn’t reuse work from previous execution
- Application-level modules typically used for complex tasks
Triggers?

- Similar, but current trigger systems not designed for the required scale

Publish-Subscribe Systems

- Similar concepts: Push-based, reactive execution
- Typically no complex queries
- Much focus on “dissemination”
Data Streams

- **Triggers?**
 - Similar, but current trigger systems not designed for the required scale

- **Publish-Subscribe Systems**
 - Similar concepts: Push-based, reactive execution
 - Typically no complex queries
 - Much focus on “dissemination”

- **Major research systems (late 90’s-early 00’s):**
 - NiagaraCQ (Wisc), Telegraph, TelegraphCQ (Berkeley)
 - STREAM (Stanford), Autora, Borealis, Medusa (Brown/Brandeis/MIT)

- **Commercial**
 - Oracle*Streams, Strembase etc...
Goal: Handle millions of triggers

Triggers: Commonly used for integrity constraint checking, alerts etc. . .

create trigger IrisHouseAlert
on insert to house
from salesperson s, house h, represents r
when s.name = ‘Iris’ and s.spno=r.spno and
r.nno=h.nno
do raise event
NewHouseInIrisNeighborhood(h.hno, h.address)

Figure: Trigger Example (Hansen et al.)
Scalable Trigger Processing (Hansen et al.)

- Goal: Handle millions of triggers
- Triggers: Commonly used for integrity constraint checking, alerts etc...

```sql
CREATE TABLE empauditlog (
    audit_date      DATE,
    audit_user      VARCHAR2(20),
    audit_desc      VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
    AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
    v_action       VARCHAR2(20);
BEGIN
    IF INSERTING THEN
        v_action := 'Added employee(s)';
    ELSIF UPDATING THEN
        v_action := 'Updated employee(s)';
    ELSIF DELETING THEN
        v_action := 'Deleted employee(s)';
    END IF;
    INSERT INTO empauditlog VALUES (SYSDATE, USER, v_action);
END;
```

Figure: Trigger Example (Hansen et al.)
Scalable Trigger Processing (Hansen et al.)

Approach:
- Identify unique “expression signatures” (based on data sources and attributes involved)
- Group the triggers into “equivalence” classes based on their signatures
- Use efficient main memory data structures to quickly find triggers that match

Many similarities to AI Rule systems
2. The TriggerMan Command Language

Commands in TriggerMan have a keyword-delimited, SQL-like syntax. TriggerMan...

Figure: Triggerman (Hansen et al.)
Figure: Triggerman (Hansen et al.)
Triggers

- Precursor to data streams work
- Event-driven as opposed to query-driven
- Can handle pub-sub applications well

E.g. “moving average” query
- Every new tuple will satisfy the query
- Trigger action (compute moving avg) will be invoked per new tuple
- No sharing of work from previous execution
- No sharing of work between multiple triggers

E.g. If one person wants moving average over last hour, other person over last two hours
Triggers

- Precursor to data streams work
- Event-driven as opposed to query driven
- Can handle pub-sub applications well
- Can identify quickly queries that should be executed
- But, no discussion on how to execute those queries efficiently
 - E.g. “moving average” query
 - Every new tuple will satisfy the query
 - Trigger action (compute moving avg) will be invoked per new tuple
Triggers

- Precursor to data streams work
- Event-driven as opposed to query driven
- Can handle pub-sub applications well
- Can identify quickly queries that should be executed
- But, no discussion on how to execute those queries efficiently
 - E.g. “moving average” query
 - Every new tuple will satisfy the query
 - Trigger action (compute moving avg) will be invoked per new tuple
 - No sharing of work from previous execution
 - No sharing of work between multiple triggers
 - E.g. If one person wants moving average over last hour, other person over last two hours
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Data Streams: Some Major Concepts

- New non-blocking operators
 - Symmetric hash join, MJoin, XJoin, Eddy etc...
- Adaptivity
 - Dealing with unpredictability
- Sharing/Multi-query optimization
 - 1000’s of queries; must share execution

- Load shedding
 - Bursty data: Too much to handle at some times

- Declarative languages
 - Especially for pattern recognition, modeling etc

- Theoretical developments
 - “One-pass” algorithms
Data Streams: Some Major Concepts

- New non-blocking operators
 - Symmetric hash join, MJoin, XJoin, Eddy etc...
- Adaptivity
 - Dealing with unpredictability
- Sharing/Multi-query optimization
 - 1000’s of queries; must share execution
- Load shedding
 - Bursty data: Too much to handle at some times
- Declarative languages
 - Especially for pattern recognition, modeling etc
- Theoretical developments
 - “One-pass” algorithms
Query execution

- Duality between queries and data
 - Traditional: Apply queries to data
 - Streams: Apply data to queries
- New operators
 - Symmetric hash join, XJoins
 - MJoin
- Predicate indexes
- Push vs Pull Execution
- Execution using a router
 - E.g. using an eddy
Query Processing

- Three new operators...
 - (Binary) Symmetric Hash Join
 - n-Ary Symmetric Hash Join (mJoin)
 - Eddy

- Developed in parallel databases or streams contexts
 - But useful in deterministic context as well

- Key difference between streams and disk-based
 - **Push vs Pull**
 - Iterators *pull* data (eventually from disk)
 - Streams *push* data into the query processor
 - Similarly, wide area data sources push data
 - Parallel query processing has a combination
 - push (across processor) and pull (within a processor)
 - Volcano paper (later)
Query Processing: Symmetric Hash Join

- Produces results immediately → Better time to first tuple
- Can implement as an iterator
 - Alternate pulling data from the two children
- Problems:
 - Larger memory requirement
 - Not as easy to extend to disk (XJoin)
For each relation: build a hash-table on each join attr.

For each new tuple:
- *insert* it into appropriate hash table(s)
- *probe* into hash-tables on other relations

Example Query

```
SELECT *  
FROM R, S, T, U  
WHERE R.a = S.a  
AND S.b = T.b  
AND S.c = U.c
```
Example Query

```
SELECT *
FROM R, S, T, U
WHERE R.a = S.a
   AND S.b = T.b
   AND S.c = U.c
```
Intermediate tuples are never stored anywhere

Need a policy for choosing the *probing sequences*

- Similarities to *selection ordering*
- *Rank ordering*: sort ascending by \(\frac{c}{1 - p} \)
 - where \(c \) = cost of probing, \(p \) = selectivity

Can change the probing sequence anytime w/o problems (*adaptivity*)

Many more details in **Survey on Adaptive QP**
Intermediate tuples are never stored anywhere

Need a policy for choosing the *probing sequences*

- Similarities to *selection ordering*
- *Rank ordering*: sort ascending by $c/(1-p)$
 - where $c =$ cost of probing, $p =$ selectivity
- Can change the probing sequence anytime w/o problems (*adaptivity*)
- Many more details in *Survey on Adaptive QP*

Issues:

- Typically less efficient than a tree of binary joins

Iterator ?

- Can alternate pulling from different children
An operator that controls the tuple in-flow and out-flow for a collection of operators

- Allows better control over scheduling and output
 - For interactive applications, for user feedback etc...
- Enables adaptivity
 - Different tuples can be processed in different orders
- Better suited for “reacting” to tuples
Eddy/Tuple Router

- An operator that controls the tuple in-flow and out-flow for a collection of operators
 - Allows better control over scheduling and output
 - For interactive applications, for user feedback etc...
 - Enables adaptivity
 - Different tuples can be processed in different orders
 - Better suited for “reacting” to tuples
- Can be implemented as an iterator
- See details in
 "An initial study of overheads of routing", SIGMOD Record 200
Figure 2: Using traditional operators along with an eddy
Figure 3: Eddy instantiated for the example query
Example Query

```
SELECT *
FROM  R, S, T, U
WHERE R.a = S.a
     AND S.b = T.b
     AND T.c = U.c
     AND \sigma_P(T)
```

Figure 3.1 shows how an eddy can be used to execute a 4-way join query. Along with an eddy, three join operators and one selection operator are instantiated. The eddy executes the query by routing tuples from the relations \(R, S, \) and \(T \) through these operators; a tuple that has been processed by all operators is sent to the output. The eddy can adapt to changing data or operator characteristics by simply changing the order in which the tuples are routed through these operators. Note that the operators themselves must be chosen in advance (this was somewhat relaxed by a latter approach called SteMs that we discuss in Chapter 5). These operator choices dictate, to a large degree, the plans among which the eddy can adapt. Pipelined operators like symmetric

Tuple Signature

<table>
<thead>
<tr>
<th>Base Tables</th>
<th>Routed Through</th>
<th>Valid Destinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>{R}</td>
<td>{}</td>
<td>(R (\bowtie) S, 1.0)</td>
</tr>
<tr>
<td>{S, T}</td>
<td>{S (\bowtie) T, \sigma_P(T)}</td>
<td>(R (\bowtie) S, 0.3), (T (\bowtie) U, 0.7)</td>
</tr>
<tr>
<td>..</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>
Eddy/Tuple Router: Mechanism vs Policy

- Tricky to reason about: Encapsulates too much logic
- Break into two pieces (discussion from AQP Survey)

Mechanism: Enables the adaptivity by allowing eddy choice at any point. As long as the eddy obeys some rules, the execution will be correct. Mechanism can be implemented efficiently (see SIGMOD Record paper).

Policy: Exploit the adaptivity for each tuple, choosing the operator to route to. This can be as complex as you want.
Tricky to reason about: Encapsulates too much logic
Break into two pieces (discussion from AQP Survey)

Mechanism: Enables the adaptivity
- By allowing eddy choice at any point
- As long as the eddy obeys some rules, the execution will be **correct**
 - Not always easy... arbitrary routings can be nonsensical
- For any tuple, the mechanism tells the eddy the valid set of operators to route to
- Mechanism can be implemented efficiently (see SIGMOD Record paper)
Eddy/Tuple Router: Mechanism vs Policy

- Tricky to reason about: Encapsulates too much logic
- Break into two pieces (discussion from AQP Survey)
- **Mechanism:** Enables the adaptivity
 - By allowing eddy choice at any point
 - As long as the eddy obeys some rules, the execution will be correct
 - Not always easy... arbitrary routings can be nonsensical
 - For any tuple, the mechanism tells the eddy the valid set of operators to route to
 - Mechanism can be implemented efficiently (see SIGMOD Record paper)
- **Policy:** Exploit the adaptivity
 - For each tuple, choose the operator to route too
 - This can be as complex as you want
Eddy/Tuple Router: Steps

- Instantiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

We will revisit policy issues when discussing AQP
Eddy/Tuple Router: Steps

- Instantiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

- At each instance:
 - Choose next tuple to process
 - Either a new source tuple or an intermediate tuple produced by an operator
 - Decide which operator to route to (using the policy)
 - Add result tuples from the operator (if any) to a queue
 - If a result tuple is fully processed, send to output
Eddy/Tuple Router: Steps

- Instantiate operators based on the query
 - Fully pipelined operators (SHJ, MJoins) preferred, otherwise not as much feedback
 - Sort-merge join will not provide any output tuples till all input tuples are consumed

- At each instance:
 - Choose next tuple to process
 - Either a new source tuple or an intermediate tuple produced by an operator
 - Decide which operator to route to (using the policy)
 - Add result tuples from the operator (if any) to a queue
 - If a result tuple is fully processed, send to output

- We will revisit policy issues when discussing AQP
Stream Systems

- **NiagaraCQ (Wisconsin)**
 - Early work on data streams

- **TelegraphCQ (Berkeley)**
 - Based on eddies; implemented in PostgreSQL
 - Focus on adaptivity and sharing issues
 - Declarative querying interface: SQL-type

- **Aurora (Brown/Brandeis/MIT)**
 - Boxes-and-arrows paradigm for setting up dataflows
 - Much focus on Quality of Service

- **STREAM (Stanford)**
 - Addressed many issues including optimization, language design, approximate query answering, memory constraints etc.

- Much other work..
Outline

1. Query Processing
 - Iterator Model
2. Data Warehouses
3. Column Stores vs Row Stores
4. Query Optimization
5. Adaptive Query Processing
6. Data Streams
 - Motivation
 - Triggerman
 - Major Concepts
 - New Operators
 - Eddies
7. Sketches
Brief Aside: Sketches

- One-pass algorithms: You can only look at each data item once
- Goal: Compute some aggregate of interest
- Question: What is the amount of space needed if the data size is N?
 - For exact or approximate computation

Examples:

1. Average: $O(1)$ (number of entries, total sum)
2. Median:
 - Exact: Space complexity = N
 - Approximate: $O(\frac{1}{\epsilon} \log \frac{1}{\epsilon} N)$, with ϵ error
Brief Aside: Sketches

- One-pass algorithms: You can only look at each data item once
- Goal: Compute some aggregate of interest
- Question: What is the amount of space needed if the data size is N?
 - For exact or approximate computation
- Examples:
 1. Average: $O(1)$ (number of entries, total sum)
 2. Median:
 - Exact: Space complexity = N
 - Approximate: $O\left(\frac{1}{\epsilon} \log^2 \epsilon N\right)$, with ϵ error
Flajolet-Martin Sketch: Count distinct number of values in a sequence in *one pass* with minimum memory

$N = \text{Length of the sequence}$

$n = \text{Number of distinct values}$

Naive Approach:
- Keep a list of all distinct values, and update incrementally
 - $O(n)$

FM-Sketches: Approximate counting in $O(\log(n))$ space
Algorithm:
- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
Algorithm:

- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
- Need a uniform hash function: $h(x)$ maps values in the sequence to $\{0, \cdots, 2^k - 1\}$.
- For each value, v in the sequence, find $h(v)$.
Algorithm:

- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
- Need a uniform hash function: $h(x)$ maps values in the sequence to $\{0, \cdots, 2^k - 1\}$.
- For each value, v in the sequence, find $h(v)$.
- Let $l(h(v))$ denote the least-significant 1 bit in $h(v)$.
 - $k = 6$, $h(v) = 000100$, then $l(v) = 3$.
 - $k = 6$, $h(v) = 000101$, then $l(v) = 1$.
Algorithm:
- Use a bitmap, B, of size k, where $k \approx \theta(\log_2(n))$
 - Aren’t we trying to estimate n?
 - Use a rough upper bound. Even if you overestimate by a factor of 4, you only use 2 more bits.
- Need a uniform hash function: $h(x)$ maps values in the sequence to $\{0, \cdots, 2^k - 1\}$.
- For each value, v in the sequence, find $h(v)$.
- Let $l(h(v))$ denote the least-significant 1 bit in $h(v)$.
 - $k = 6$, $h(v) = 000100$, then $l(v) = 3$.
 - $k = 6$, $h(v) = 000101$, then $l(v) = 1$.
- Set $B(l(v)) = 1$.
- Note: Duplicate values will just set the same bit again: “duplicate-insensitive”
Algorithm (Cntd):

- At the end, let c be the least-significant (right-most) 0 in B
- 1.2928×2^c is an estimator for the number of distinct values
Algorithm (Cntd):

- At the end, let \(c \) be the least-significant (right-most) 0 in \(B \)
- \(1.2928 \times 2^c \) is an estimator for the number of distinct values
- Why?
 - Choose a number, \(x \), uniformly between 0 to \(2^k - 1 \).
 - \(\text{Prob}(l(x) = c) = 1/2^{c+1} \)
 - Hash function is assumed to map values in the sequence uniformly onto the above range as well
Algorithm (Cndtd):

- At the end, let c be the least-significant (right-most) 0 in B
- 1.2928×2^c is an estimator for the number of distinct values
- Why?
 - Choose a number, x, uniformly between 0 to $2^k - 1$.
 - $\text{Prob}(l(x) = c) = 1/2^{c+1}$
 - Hash function is assumed to map values in the sequence uniformly onto the above range as well

- Use multiple hash functions for more confidence
- Space: $O(\log(n))$
- Choosing hash functions?
 - Tricky: uniform hash functions take a lot of space
 - Much work on relaxing the requirement
Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let m_i be the frequency of i in the stream

- $m_1 = 3$, $m_2 = m_3 = 2$, $m_4 = m_5 = 1$.

Frequency moment $F_k = \sum_{i=1}^{n} m_i^k$
Alon, Matias, Szegedy: Space Complexity of Approximating the Frequency Moments; STOC 1996

Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let m_i be the frequency of i in the stream

$m_1 = 3, m_2 = m_3 = 2, m_4 = m_5 = 1$.

Frequency moment $F_k = \sum_{i=1}^{n} m_i^k$

$F_0 = 5 = \text{number of distinct elements in the stream}$

$F_1 = 9 = \text{total number of elements in the stream}$

$F_2 = 19 = \text{comes in up many places (e.g. self-join size of a relation)}$
Consider a stream: (1, 2, 3, 1, 5, 2, 1, 3, 4)

Let \(m_i \) be the frequency of \(i \) in the stream

\[
m_1 = 3, \quad m_2 = m_3 = 2, \quad m_4 = m_5 = 1.
\]

Frequency moment \(F_k = \sum_{i=1}^{n} m_i^k \)

\[
F_0 = 5 = \text{number of distinct elements in the stream}
\]
\[
F_1 = 9 = \text{total number of elements in the stream}
\]
\[
F_2 = 19 = \text{comes in up many places (e.g. self-join size of a relation)}
\]

How to compute?

Exact computation: \(O(n) \), where \(n \) is the number of distinct elements, not the size of stream

Approximate: AMS Result: Can approximate \(F_0, F_1, F_2 \) in logarithmic space, requires \(O(n^{\Omega(1)}) \) space for others