Dataflow Analysis Frameworks

Data-flow Analysis

• Many data-flow equations have the same structure
 → RD(B) = ∪ (GEN(Bi) ∪ [RD(Bi) - KILL(Bi)])
 → LV(B) = ∪ (GEN(Bi) ∪ [LV(Bi) - KILL(Bi)])
 → AVAIL(B) = ∩ (GEN(Bi) ∪ [AVAIL(Bi) - KILL(Bi)])
 → VBE(B) = ∩ (GEN(Bi) ∪ [VBE(Bi) - KILL(Bi)])
 → CONST(B) = ∩ (GEN(Bi) ∪ [CONST(Bi) - KILL(Bi)])
 Where Bi ∈ PRED(B) or SUCC(B) depending on problem

• What do data-flow problems have in common?
 → Meet operator ∧ to merge results
 → Propagation functions to model basic blocks
 → Direction forward, backward
 → Best case and worst case values

CS430
Data-flow Analysis Frameworks

- Can use same **framework** to solve these data-flow problems
 - Local GEN, KILL information for each basic block
 - Initial values for data-flow solutions
 - Iterate through nodes in CFG until values stabilize

- Data-flow framework has three components
 - Set of values \(L \)
 - Operator for combining values \(\land \)
 - A set of propagation functions \(L \rightarrow L \)

- Benefits of using framework
 - Defines properties needed to guarantee correctness, convergence
 - Can describe convergence speed and precision of results
 - Can reuse code to solve other problems

Data-flow Lattices

- A **lattice** consists of a set of values \(L \) and a meet operator \(\land \)
 - For every \(a, b, c \) in \(L \)
 - \(a \land a = a \) idempotent
 - \(a \land b = b \land a \) commutative
 - \((a \land b) \land c = a \land (b \land c) \) associative
 - \(\land \) imposes a partial order on \(L \)
 - \(a \geq b \iff a \land b = b \)
 - \(a > b \iff a \geq b \text{ and } a \neq b \)
 - A lattice may have a top element
 - \(\top \land a = a \)
 - A lattice may have a bottom element
 - \(\bot \land a = \bot \)
Data-flow Lattices

• How does this relate to data-flow analysis?
 → Choose a semi-lattice L to represent facts
 → Attach to each element of L a meaning
 • Each $a \in L$ is a distinct set of known facts
 → For each basic block n, associate a propagation/transfer function
 • $f_n : L \rightarrow L$ models behavior of n
 → Propagate facts around control flow graph

• Example for AVAIL
 → Semi-lattice L is 2^E, where
 • E is set of all expressions
 • \wedge is \cap
 • \top is \emptyset
 • \bot is E
 → For a node n, f_n has the form
 • $f_n(x) = \text{GEN}_n \cup (x - \text{KILL}_n)$

Iterative Solver

• What about loops?
 → Circular dependences between basic blocks
 → Can initialize and solve repeatedly

• Termination
 → Goal is for solutions to converge to a fixed point
 → Can stop once answer stops changing
 → Is this guaranteed?
Monotonicity

- A data-flow analysis framework is **monotone** if
 \[x \leq y \implies f(x) \leq f(y) \]
 i.e., "a smaller or equal" input to the same function will always give a "a smaller or equal" output

- Equivalently
 \[f(x \land y) \leq f(x) \land f(y) \]
 i.e., if result of merging inputs then applying \(f \) is "smaller or equal" to applying \(f \) individually then merging result

- Intuitively, monotonicity means "smaller" input will not yield "larger" output

- Monotone frameworks are guaranteed to converge and terminate
 \[\text{If lattice elements can drop information a finite number of times} \]

Quality of Solution

- Possible solutions
 - **Perfect solution**
 - Meet over real paths taken during program execution
 - **Meet-over-all-pats (MOP)**
 - Meet over potential paths in control flow graph
 - **Maximal-fixed-point (MFP)**
 - Solution from iterative framework

- Properties
 - In general, \(\text{MFP} \leq \text{MOP} \leq \text{perfect solution} \)
 - In some sense, \(\text{MOP} \) is the best feasible solution
 - \(\text{MFP} \) is unique, regardless of order of propagation
 - A framework is distributive if \(f(x \land y) = f(x) \land f(y) \)
 - \(\text{MFP} = \text{MOP} \) for distributive framework