The Happens-Before Relationship

Here is a short summary of the definitions involved in the Happens-Before relation.

1. A trace is a sequence of events.

 \[
 \text{Events } E ::= \text{start}(T) \\
 | \text{end}(T) \\
 | \text{read}(T,x,v) \\
 | \text{write}(T,x,v) \\
 | \text{lock}(T,x) \\
 | \text{unlock}(T,x)
 \]

2. Let \(E_1 < E_2 \) be the ordering of events as they appear in the trace.

3. Define happens-before ordering \(<: \) in a trace \(R \) as follows:
 \(E_1 <: E_2 \) iff \(E_1 < E_2 \) and one of the following holds:
 a) \(\text{thread}(E_1) = \text{thread}(E_2) \)
 b) \(E_1 \) is unlock(T1,x) and \(E_2 \) lock(T2,x)
 c) there exists \(E_3 \) with \(E_1 <: E_3 \) and \(E_3 <: E_2 \)

4. Updates are visible based on the following rules. For a trace \(r \)
 containing \(EW == \text{write}(T_1,x,v_1) \) and \(ER == \text{read}(T_2,x,v_2) \):

 \(EW \) "is not visible" to \(ER \) if
 - \(ER <: EW \)
 - There exists some event \(EW_2 == \text{write}(T,x,v_3) \) such that \(EW <: EW_2 <: R \)

 Otherwise \(EW \) is visible at \(ER \)

5. A data race takes place when there are two events in trace \(R \) that
 - access the same memory location
 - at least one is a write
 - they are unordered according to happens-before