Consider the following syntax of the programming language PB ("Peanut Butter"):

\[
Exp \ e \ ::= \ True \mid False \\
| \ Nil \\
| \ Pair(e, e) \\
| \ Proj_L(e) \\
| \ Proj_R(e) \\
| \ Cond(e, e, e)
\]

The Peanut Butter language contains pairs, nil, and booleans. The behavior of PB programs is a bit quirky; we describe how PB programs work informally below:

- Values in PB include booleans, nil, and pairs of values (note: this is a recursive definition); pairs are constructed with Pair.

- Pair values are deconstructed with Proj_L and Proj_R, which project out the left and right component of a pair, respectively. So for example, Proj_L(Pair(e_1, e_2)) = e_1. Applying Proj_L or Proj_R to non-pair values is an error.

- Cond(e_1, e_2, e_3) is a conditional form, which selects e_2 to evaluate whenever e_1 evaluates to a truish value, and selects e_2 to evaluate otherwise. A truish value is any value that is not False.

So for example, Cond(False, e_1, e_2) = e_2, but Cond(Pair(False, False), e_1, e_2) = e_1.
Problem 1. Give a formal definition of the set of values in \(\mathcal{PB} \).

Problem 2. Define a natural semantics for \(\mathcal{PB} \). Show the derivation for evaluating the program:

\[
\text{Proj}_L(\text{Cond}(\text{Pair(True, False)}, \text{Pair(False, Nil)}, \text{Pair(True, Nil)}))
\]

(Your semantics should only specify the “good” behavior of programs and doesn’t need to bother with erroneous programs.)
It turns out that even though \(\mathcal{PB} \) only has pairs, nil, and booleans for values, \(\mathcal{PB} \) programmers tend to think in terms of “lists”. Lists are either empty or consist of an element paired together with another list. An empty list is represented by \(\text{Nil} \). So for example, the list of three \(\text{True} \) values could be represented:

\[
\text{Pair(True, Pair(True, Pair(True, Nil)))}.
\]

Moreover, \(\mathcal{PB} \) programmers think in terms of homogeneous lists, i.e. lists of the same kinds of elements. So for example, a \(\mathcal{PB} \) programmer thinks in terms of “a list of booleans” or “a list of lists of booleans,” etc.

With that in mind we can formalize a notion of types for \(\mathcal{PB} \):

\[
\text{Type } t ::= \text{Bool} \\
\quad | \quad \text{List}(t)
\]

Problem 3. Define a type judgement relation for \(\mathcal{PB} \) programs. Your type system should accept the program given in problem 2 as having type \(\text{Bool} \). Give the type derivation for the program in problem 2. Give an example of a program that is ill-typed.
After years of use, the PB language was replaced by its successor PB&J, which added the following features to PB:

- Using the $J(e)$ operator, programs could jump to end of evaluation, making the value of e the final result of the computation.

- Programs no longer consisted of single expressions e, but instead consist of any number function definitions followed by an expression that can make use of those definitions. Functions take a single argument and may be (mutually) recursive. Functions are not values in PB&J.

- Projection operations were replaced by a pattern matching construct: $\text{Let}(x, y, e_1, e_2)$ which evaluates e_1 to a pair then binds x to the left component and y to the right, within the scope of e_2.

Problem 4. Give a formal definition of the syntax of PB&J programs.
Problem 5. Define a small step reduction semantics for $\mathcal{P}B&J$. □