Context Reasoning II

Beth McNany
April 1, 2014
Pervasive Computing

Give the right information
 ... to the right users
 ... at the right time
 ... on the right device

We need context!
Context Reasoning

Why?

- Imperfection and uncertainty:
 - Unknown
 - Ambiguous
 - Imprecise
 - Erroneous
Context Reasoning

Goals:

• Reason about dynamic and ambiguous context information
• Manage large amounts of context data in real-time
• Collective intelligence and distributed reasoning
Context Reasoning

General Strategies:
• Ontological
• Rule-Based
• Distributed
Ontological Reasoning

- Capable of expressing a formal context model that can be shared, reused, and extended
- Typically Semantic Web; SW query languages and reasoning engines available
- Goals:
 - retrieve relevant information
 - check consistency
 - derive implicit knowledge
Ontological Reasoning

Example: CONON (CONtext Ontology)

- OWL-encoded for modeling context in pervasive computing environments
- Location, user, activity, computational entity
Figure 2. Partial definition of a specific ontology for home domain
CONON: Goals

- Check consistency of context
- Deduce implicit context from low-level data
- Ontology reasoning with a restricted set of first-order formulas
- Allow user-defined formulas
- Example: smart phone
<table>
<thead>
<tr>
<th>Situation</th>
<th>Reasoning Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeping</td>
<td>(?u locatedIn Bedroom) ^ (Bedroom lightLevel LOW) ^ (Bedroom drapeStatus CLOSED) [?u situation SLEEPING]</td>
</tr>
<tr>
<td>Showering</td>
<td>(?u locatedIn Bathroom) ^ (WaterHeater locatedIn Bathroom) ^ (Bathroom doorStatus CLOSED) ^ (WaterHeater status ON) [?u situation SHOWERING]</td>
</tr>
<tr>
<td>Cooking</td>
<td>(?u locatedIn Kitchen) ^ (ElectricOven locatedIn Kitchen) ^ (ElectricOven status ON) [?u situation COOKING]</td>
</tr>
<tr>
<td>Watching-TV</td>
<td>(?u locatedIn LivingRoom) ^ (TVSet locatedIn LivingRoom) ^ (TVSet status ON) [?u situation WATCHINGTV]</td>
</tr>
<tr>
<td>Having-Dinner</td>
<td>(?u locatedIn DiningRoom) ^ (?v locatedIn DiningRoom) ^ (?u owl:differentFrom ?v) [?u situation HAVINGDINNER]</td>
</tr>
</tbody>
</table>
CONON: Prototype

- Context reasoners using Jena2 engine
- Several context datasets from 1K to 10K RDF triples (S-V-O predicate)
- Performance depends on context information size, complexity of rules
- Could perform intensive reasoning offline or on a central server
Ontological Reasoning: Summary

• Advantages
 • Integrates easily with the widely-used ontology model of context
 • Relatively low computational complexity

• Disadvantages
 • Cannot handle missing or ambiguous information
 • Does not provide support for decision making
Rule-Based Reasoning

- Another formal model for context
- Use first-order predicates and logic to derive new information given context data
- Requires conflict resolution for competing rules
- Logic engines available, but may need modifications
Rule-Based Reasoning

Example: Gaia

- Context information represented as predicates
- Set of rules to deduce higher-level knowledge
- Rules are re-evaluated upon change in context
- Focus on encoding and resolving uncertainty within “Active Spaces”
Gaia: Context Predicates

- Predicates are helpful because they can be plugged into rules directly
- Use ontologies to check validity, define translations between environments
- Each predicate has a confidence value

location(Jeff, in, room 3015) light(room 3220, dim)
activity(room 3102, meeting) office(Jeff, room 3216)
Probabilistic and Fuzzy Logic

- Allows statements like:
 \[\text{prob}(E) < \frac{1}{3} \]
 \[\text{prob}(E) \geq 2 \times \text{prob}(F) \]

- Fuzzy logic is similar, but with degrees of membership rather than probability
Bayesian Networks

• Directed acyclic graphs
• Nodes are variables representing events
• Edges are causal relationships
• Each value a variable can take corresponds to a predicate
• Initialize with prior probabilities of root nodes and conditional probabilities of non-root nodes
Architecture

- API designed to allow developers concentrate on developing rules and networks
- Allows plugging in different reasoning strategies
- Infrastructure auto-updates with current context information
Resolving Uncertainty

• In sensing context
 • Example: RFID tags
• In inferring context
 • Example: authentication, room activity
• In using uncertain context information
 • Example: troubleshooting
Rule-Based Reasoning

• Advantages
 • Provide a formal model
 • Easy to understand, widely used, and can integrate with an ontology model
 • Work well with data of known quality

• Disadvantages
 • Difficult to handle dynamic, ambiguous, and imperfect information
 • Had to build additional reasoning mechanisms to handle conflicts and uncertainty
Distributed Reasoning

- Many different entities available to collect, process, and change context information
- Same context, different viewpoints
- Example: CARE middleware
CARE middleware

- Goal: support context-aware adaptation of internet services for mobile users
- Efficiency and scalability critical
- Each entity has an associated profile
 - “Shallow” context data
 - Ontology-based context data
- User and service provider declare rules
CARE middleware

- Both rule-based and ontological
- May require retrieving data from different entities to evaluate
- TBox: definition of classes and relations, static
- ABox: individual objects in domain
Experimental Results

- Task: realization of an instance *CurrentActivity* in the *Activity* class
- Response time grows exponentially normally, but linearly with a priori realization in Abox
- When TBox and ABox are both large (500, 2000), on the order of seconds
Distributed Reasoning

• Advantages
 • Combine different device capabilities
 • Potential to speed up reasoning process

• Disadvantages
 • Scalability to large contexts
 • Tied to client-server architecture
Discussion

• We need context models that can deal with imperfect data!
• Tradeoff between completeness and performance
• Scalability is a continuing issue, but performing processing in advance helps considerably
References