CMSC 430
Introduction to Compilers
Spring 2015

Operational Semantics
Syntax vs. semantics

• Syntax = grammatical structure
• Semantics = underlying meaning

• Sentences in a language can be syntactically well-formed but semantically meaningless
 ▪ if (“foo” > 37) { oogbooga(3); “baz” * “qux”; }

• ocamllex and ocamlyacc enforce syntax
 ▪ (Though could play tricks in actions to check semantics)
Syntax vs. semantics (cont’d)

• General principle: enforce correctness at the earliest stage possible
 - Keywords identified in lexer
 - Balanced ()’s enforced in parser
 - Types enforced afterward

• Why?
 - Earlier in pipeline ⇒ simpler to think about
 - Reporting errors is easier
 - Less transformation from original program
 - Errors may be easier to localize
 - Faster algorithms for detecting violations
 - Higher chance could employ them interactively in IDE
Detour: Natural deduction

• We are going to use *natural deduction* rules to describe semantics
 - So we need to understand how those work first

• Natural deduction rules provide a syntax for writing down proofs
 - Each rule is essentially an axiom
 - Rules are composed together
 - The result is called a *derivation*
 - The things rules prove are called *judgments*
Structure of a rule

- H1 ... Hn are hypotheses, C is the conclusion
- “If H1 and H2 and ... and Hn hold, then C holds”
Example: Logic

\[\begin{align*}
&\text{\(A\)} \quad \text{\(B\)} \\
&\hline
&\text{\(A \land B\)} \\
&\hline
&\text{\(A\)} \\
&\text{\(^{-}\land\text{I}\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A \land B\)} \\
&\hline
&\text{\(A\)} \\
&\text{\(^{-}\land\text{E}_L\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A \land B\)} \\
&\hline
&\text{\(B\)} \\
&\text{\(^{-}\land\text{E}_R\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A\)} \\
&\hline
&\text{\(A \lor B\)} \\
&\text{\(^{-}\lor\text{I}_L\)}
\end{align*} \]

\[\begin{align*}
&\text{\(B\)} \\
&\hline
&\text{\(A \lor B\)} \\
&\text{\(^{-}\lor\text{I}_R\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A \lor B\)} \\
&\hline
&\text{\(C\)} \\
&\text{\(C\)} \\
&\text{\(^{-}\lor\text{E}\)}
\end{align*} \]

\[\begin{align*}
&\text{true} \\
&\hline
&\text{true} \\
&\hline
&\text{\(B\)} \\
&\text{\(^{-}\text{I}\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A\)} \\
&\hline
&\text{\(\ldots\)} \\
&\hline
&\text{\(A \Rightarrow B\)} \\
&\text{\(^{-}\text{I}\)}
\end{align*} \]

\[\begin{align*}
&\text{\(A\)} \\
&\hline
&\text{\(A \Rightarrow B\)} \\
&\text{\(B\)} \\
&\text{\(^{-}\text{E}\)}
\end{align*} \]

(modus ponens)
Example: Logic (cont’d)

\[\begin{align*}
A & \quad \neg C \\
\text{...} & \quad \text{...} \\
C & \quad \neg C \\
\hline
\neg A & \quad \neg A
\end{align*} \]

(\text{reductio ad absurdum})

\[\begin{align*}
A & \quad \neg A \\
\hline
\neg-E \\
B & \quad \text{(noncontradiction)}
\end{align*} \]

• Note these are axioms from classical logic
Example derivations

\[
\begin{align*}
A \land (B \lor C) & \\
& \Rightarrow A
\end{align*}
\]

\[
\begin{align*}
A \lor (A \land B) & \\
A & \\
& \Rightarrow A
\end{align*}
\]
IMP: A language of commands

\[a ::= n \mid X \mid a_0 + a_1 \mid a_0 - a_1 \mid a_0 \times a_1 \]

\[b ::= \text{bv} \mid a_0 = a_1 \mid a_0 \leq a_1 \mid \neg b \mid b_0 \land b_1 \mid b_0 \lor b_1 \]

\[c ::= \text{skip} \mid X := a \mid c_0 ; c_1 \mid \text{if } b \text{ then } c_0 \text{ else } c_1 \mid \text{while } b \text{ do } c \]

- \(n \in \mathbb{N} = \text{integers}, \ X \in \text{Var} = \text{variables}, \ \text{bv} \in \text{Bool} = \{\text{true, false}\} \)
- This is a typical way of presenting a language
 - Notice grammar is for ASTs
 - Not concerned about issues like ambiguity, associativity, precedence
- Syntax stratified into commands (c) and expressions (a,b)
 - Expressions have no side effects
- No function calls (and no higher order functions)
- So: How do we specify the semantics of IMP?
Program state

• IMP contains imperative updates, so we need to model the program state
 ▪ Here the state is simply the integer value of each variable
 ▪ (Notice can’t assign a boolean to a variable, by syntax!)

• State:
 ▪ $\sigma : \text{Var} \rightarrow \mathbb{N}$
 ▪ A state σ is a mapping from variables to their values
Judgments

- Operational semantics has three kinds of judgments
 - $\langle a, \sigma \rangle \rightarrow n$
 - In state σ, arithmetic expression a evaluates to n
 - $\langle b, \sigma \rangle \rightarrow bv$
 - In state σ, boolean expression b evaluates to true or false
 - $\langle c, \sigma \rangle \rightarrow \sigma'$
 - Running command c in state σ produces state σ'

- Can immediately see only commands have side effects
 - Only form whose evaluation produces a new state
 - Commands also do not return values
 - Note this is math, so we express state changes by creating the new state σ'. We can't just "mutate" σ.
Arithmetic evaluation

\[\langle n, \sigma \rangle \rightarrow n \]

\[\langle X, \sigma \rangle \rightarrow \sigma(X) \]

\[\langle a_0, \sigma \rangle \rightarrow n_0 \]
\[\langle a_1, \sigma \rangle \rightarrow n_1 \]
\[\langle a_0 + a_1, \sigma \rangle \rightarrow n_0 + n_1 \]

\[\langle a_0 - a_1, \sigma \rangle \rightarrow n_0 - n_1 \]

\[\langle a_0 \times a_1, \sigma \rangle \rightarrow n_0 \times n_1 \]
• Notes:
 - Rule for variables only defined if X is in $\text{dom}(\sigma)$. Otherwise the program goes wrong, i.e., it has no meaning
 - Hypotheses of last three rules stacked to save space
 - Notice difference between syntactic operators, on the left side of arrows, and mathematical operators, on the right side of arrows
 - One rule for each kind of expression
 - These are syntax-directed rules
 - In the rules, we use terminals and non-terminals in the grammar to stand for anything producible from them
 - E.g., n stands for any integer; σ for any state; etc.
 - Order of evaluation irrelevant, because there are no side effects
Sample derivation

• $1+2+3$

• $(2\times x)-4$ in $\sigma = [x \mapsto 3]$
(* a ::= n | X | a0+a1 | a0-a1 | a0×a1 *)

type aexpr =
 | AInt of int
 | AVar of string
 | APlus of aexpr * aexpr
 | AMinus of aexpr * aexpr
 | ATimes of aexpr * aexpr

let rec aeval sigma = function
 | AInt n -> n
 | AVar n -> List.assoc n sigma
 | APlus (a1, a2) -> (aeval sigma a1) + (aeval sigma a2)
 | AMinus (a1, a2) -> (aeval sigma a1) - (aeval sigma a2)
 | ATimes (a1, a2) -> (aeval sigma a1) * (aeval sigma a2)
Boolean evaluation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \text{true}, \sigma \rangle$</td>
<td>true</td>
</tr>
<tr>
<td>$\langle \text{false}, \sigma \rangle$</td>
<td>false</td>
</tr>
<tr>
<td>$\langle \neg b, \sigma \rangle$</td>
<td>$\neg b$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle a_0, \sigma \rangle$</td>
<td>n_0</td>
</tr>
<tr>
<td>$\langle a_1, \sigma \rangle$</td>
<td>n_1</td>
</tr>
<tr>
<td>$\langle a_0 = a_1, \sigma \rangle$</td>
<td>$n_0 = n_1$</td>
</tr>
<tr>
<td>$\langle a_0 \leq a_1, \sigma \rangle$</td>
<td>$n_0 \leq n_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle b_0, \sigma \rangle$</td>
<td>bv_0</td>
</tr>
<tr>
<td>$\langle b_1, \sigma \rangle$</td>
<td>bv_1</td>
</tr>
<tr>
<td>$\langle b_0 \land b_1, \sigma \rangle$</td>
<td>$bv_0 \land bv_1$</td>
</tr>
<tr>
<td>$\langle b_0 \lor b_1, \sigma \rangle$</td>
<td>$bv_0 \lor bv_1$</td>
</tr>
</tbody>
</table>
Sample derivations

• $\neg false \land true$

• $2 \leq X \lor X \leq 4$ in $\sigma = [X \mapsto 3]$
Correspondence to OCaml

(* b ::= bv | a0=a1 | a0≤a1 | ¬b | b0∧b1 | b0∨b1 *)

type bexpr =
| BV of bool
| BEq of aexpr * aexpr
| BLeq of aexpr * aexpr
| BNot of bexpr
| BAnd of bexpr * bexpr
| BOr of bexpr * bexpr

let rec beval sigma = function
| BV b -> b
| BEq (a1, a2) -> (aeval sigma a1) = (aeval sigma a2)
| BLeq (a1, a2) -> (aeval sigma a1) <= (aeval sigma a2)
| BNot b -> not (beval sigma b)
| BAnd (b1, b2) -> (beval sigma b1) && (beval sigma b2)
| BOr (b1, b2) -> (beval sigma b1) || (beval sigma b2)
Command evaluation

\[
\begin{align*}
\langle \text{skip, } \sigma \rangle & \rightarrow \sigma \\
\langle a, \sigma \rangle & \rightarrow n \\
\langle X:=a, \sigma \rangle & \rightarrow \sigma[X:=n]
\end{align*}
\]

- Here \(\sigma[X:=a]\) is the state that is the same as \(\sigma\), except \(X\) now maps to \(a\)
 - \((\sigma[X:=a])(X) = a\)
 - \((\sigma[X:=a])(Y) = \sigma(Y) \quad X \neq Y\)
- Notice order of evaluation explicit in sequence rule
Command evaluation (cont’d)

• Two rules for conditional
 - Just like in logic we needed two rules for \land-E and \lor-I
 - Notice we specify only one command is executed
Command evaluation (cont’d)

\[\langle b, \sigma \rangle \rightarrow \text{false} \]

\[\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma \]

\[\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c; \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma' \]

\[\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma' \]
Sample derivations

• \(n:=3; f:=1; \text{ while } n \geq 1 \text{ do } f := f \ast n; n := n - 1 \)
Correspondence to OCaml

(* c ::= skip | X:=a | c0;c1 | if b then c0 else c1 | while b do c *)

type cmd =
| CSkip
| CAssn of string * aexpr
| CSeq of cmd * cmd
| CIF of bexpr * cmd * cmd
| CWhile of bexpr * cmd

let rec ceval sigma = function
| CSkip -> sigma
| CAssn (x, a) -> (x:(aeval sigma a))::sigma
(* note List.assoc in aeval stops at first match *)
| CSeq (c0, c1) ->
 let sigma0 = ceval sigma c0 in ceval sigma0 c1
(* or “ceval (ceval sigma c0) c1” *)
| CIF (b, c0, c1) ->
 if (beval sigma b) then (ceval sigma c0)
 else (ceval sigma c1)
| CWhile (b, c) ->
 if (beval sigma b)
 then ceval sigma (CSeq (c, CWhile(b,c)))
 else sigma
Big-step semantics

- Semantics given are “big step” or “natural semantics”
 - E.g., \(\langle c, \sigma \rangle \rightarrow \sigma' \)
 - Commands fully evaluated to produce the final output state, in one, big step

- Limitation: Can’t give semantics to non-terminating programs
 - We would need to work with infinite derivations, which is typically not valid
 - (Note: It is possible, though, using a co-inductive interpretation)
Small-step semantics

• Instead, can expose intermediate steps of computation

 ▪ \(a \rightarrow_{\sigma} a' \)
 - Evaluating \(a \) one step in state \(\sigma \) produces \(a' \)
 ▪ \(b \rightarrow_{\sigma} b' \)
 - Evaluating \(b \) one step in state \(\sigma \) produces \(b' \)
 ▪ \(\langle c, \sigma \rangle \rightarrow_1 \langle c', \sigma' \rangle \)
 - Running command \(c \) in state \(\sigma \) for one step yields a new command \(c' \) and new state \(\sigma' \)

• Note putting \(\sigma \) on the arrow is just a convenience
 ▪ Good notation for stringing evaluations together
 - \(a_0 \rightarrow_{\sigma} a_1 \rightarrow_{\sigma} a_2 \rightarrow_{\sigma} ... \)
 ▪ Put 1 on arrow for commands just to let us distinguish different kinds of arrows
Small-step rules for arithmetic

- Similarly for - and ×
- Notice no rule for evaluating integer \(n \)
 - An integer is in *normal form*, meaning no further evaluation is possible
- We’ve fixed the order of evaluation
 - Could also have made it non-deterministic
Context rules

• We have some rules that do the “real” work
 ▪ The rest are context rules that define order of evaluation

• Cool trick (due to Hieb and Felleisen):
 ▪ Define a context as a term with a “hole” in it
 - \(C ::= □ | C+a | n+C | C-a | n-C | C×a | n×C \)
 ▪ Notice the terms generated by this grammar always have exactly one □, and it always appears at the next position that can be evaluated
 ▪ Define \(C[a] \) to be \(C \) where □ is replaced by \(a \)
 - Ex: \(((□+3) \times 5)[4] = (4+3) \times 5 \)
 ▪ Now add one, single context rule:

\[
\begin{align*}
a & \rightarrow \\
\hline
C[a] & \rightarrow
\end{align*}
\]
Small-step rules for booleans

• Very similar to arithmetic expressions
 ▪ Too boring to write them all down...
Small-step rules for commands

• Let’s define contexts, to get that out of the way
 ▪ \(C ::= \square | X:=C | C;c1 | \text{if } C \text{ then } c0 \text{ else } c1 | \text{while } C \text{ do } c \)

• Now the rules (plus the context rule):

<table>
<thead>
<tr>
<th>Context</th>
<th>Rule</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle X:=n, \sigma \rangle)</td>
<td>(\rightarrow)</td>
<td>(\langle \text{skip, } \sigma[x↦n] \rangle)</td>
</tr>
<tr>
<td>(\langle \text{skip; } c1, \sigma \rangle)</td>
<td>(\rightarrow)</td>
<td>(\langle c1, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{if true then } c0 \text{ else } c1, \sigma \rangle)</td>
<td>(\rightarrow)</td>
<td>(\langle c0, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{if false then } c0 \text{ else } c1, \sigma \rangle)</td>
<td>(\rightarrow)</td>
<td>(\langle c1, \sigma \rangle)</td>
</tr>
<tr>
<td>(\langle \text{while } b \text{ do } c, \sigma \rangle)</td>
<td>(\rightarrow)</td>
<td>(\langle \text{if } b \text{ then (c; while } b \text{ do } c) \text{ else } \text{skip, } \sigma \rangle)</td>
</tr>
</tbody>
</table>
Lambda calculus

- $e ::= x | \lambda x.e | e\ e$

- Recall
 - Scope of λ extends as far to the right as possible
 - $\lambda x.\lambda y. x\ y$ is $\lambda x.(\lambda y.(x\ y))$
 - Function application is left-associative
 - $x\ y\ z$ is $(x\ y)\ z$
 - Beta-reduction takes a single step of evaluation
 - $(\lambda x.e1)\ e2 \rightarrow e1[e2/x]$
A non-deterministic semantics

Why are these semantics non-deterministic?
...with context rules

- \(C ::= \square \mid \lambda x. C \mid C \ e \mid e \ C \)

\[
\begin{align*}
e & \rightarrow e' \\
\hline
C[e] & \rightarrow C[e']
\end{align*}
\]

\[
(\lambda x. e1) \ e2 \rightarrow e1[e2/x]
\]
The Church-Rosser Theorem

• If $a \rightarrow^* b$ and $a \rightarrow^* c$, there there exists d such that $b \rightarrow^* d$ and $c \rightarrow^* d$

• Church-Rosser is also called **confluence**
Normal Form

• A term is in *normal form* if it cannot be reduced
 ▪ Examples: $\lambda x.x$, $\lambda x.\lambda y.z$

• By Church-Rosser Theorem, every term reduces to at most one normal form
 ▪ Warning: All of this applies only to the pure lambda calculus with non-deterministic evaluation

• Notice that for our application rule, the argument need not be in normal form
Not Every Term Has a Normal Form

- Consider
 - $\Delta = \lambda x.x \ x$
 - Then $\Delta \Delta \rightarrow \Delta \Delta \rightarrow \ldots$

- In general, *self application* leads to loops
 - ...which is where the \mathbf{Y} combinator comes from (see 330)
Lazy vs. Eager Evaluation

• Our non-deterministic reduction rule is fine in theory, but awkward to implement

• Two deterministic strategies:
 - **Lazy**: Given \((\lambda x.e_1) e_2\), do not evaluate \(e_2\) if \(e_1\) does not “need” \(x\)
 - Also called left-most, call-by-name (c.b.n.), call-by-need, applicative, normal-order (with slightly different meanings)
 - **Eager**: Given \((\lambda x.e_1) e_2\), always evaluate \(e_2\) fully before applying the function
 - Also called call-by-value (c.b.v.)
C.b.n. small-step semantics

- $e ::= x \mid \lambda x.e \mid e \; e$

- $\lambda x.e1 \; e2 \rightarrow e1[e2/x]$

- $e1 \rightarrow e1'$

- $e1 \; e2 \rightarrow e1' \; e2$

- Must evaluate function position until we get to a lambda

- Apply as soon as we know what fn we’re applying

- Do not evaluate “under” and lambda

- Do not evaluate the argument

- In context form:
 - $C ::= _ \mid C \; e$
C.b.v. small-step semantics

- \(e ::= x \mid v \mid e \ e \)
- \(v ::= \lambda x.e \)

\[
(\lambda x.e) \ v \rightarrow e[v/x]
\]

- Must evaluate function position until we get to a lambda
- Evaluate function posn *before* argument posn
 - Not important here, but matters if we add side effects
- Do not evaluate “under” and lambda
- Argument must be fully evaluated before the call

- In context form:
 - \(C ::= \square \mid C \ e \mid v \ C \)
C.b.n. versus c.b.v. in theory

• Call-by-name is *normalizing*
 ▪ If \(a \) is closed and there is a normal form \(b \) such that \(a \rightarrow^* b \) under the non-deterministic semantics, then \(a \rightarrow^* d \) for some \(d \) under c.b.n. semantics

• Call-by-value is not!
 ▪ There are some programs that terminate under call-by-name but not under call-by-value
 - E.g., \((\lambda x. (\lambda y. y)) \, \Delta \, \Delta\)
 - Where \(\Delta = \lambda x. x \, x \)
 - The non-terminating argument \((\Delta \, \Delta)\) is discarded under c.b.n., but c.b.v. attempts to evaluate it
C.b.n. vs. c.b.v. in practice

• Lazy evaluation (call by name, call by need)
 ▪ Has some nice theoretical properties
 ▪ Terminates more often
 ▪ Lets you play some tricks with “infinite” objects
 ▪ Main example: Haskell

• Eager evaluation (call by value)
 ▪ Is generally easier to implement efficiently
 ▪ Blends more easily with side effects
 ▪ Main examples: Most languages (C, Java, ML, etc.)