1. (15 pts) Prove that in any undirected graph of \(n \) vertices \((n \geq 2) \), there are always at least two vertices that have the same degree.

2. (20 pts) Suppose that an undirected graph \(G = (V, E) \) contains two nodes \(s \) and \(t \) such that the distance between \(s \) and \(t \) is strictly greater than \(n/2 \). Show that there must exist some node \(v \), not equal to either \(s \) or \(t \), such that deleting \(v \) from \(G \) destroys all \(s-t \) paths. Give an \(O(m+n) \) algorithm to find such a node \(v \).

3. (20 pts) A cut vertex of an undirected connected graph is one whose removal (and removal of its incident edges) disconnects the graph. Give an \(O(m+n) \) algorithm to find all cut vertices of an undirected connected graph. (Hint: derive a relationship between cut vertices and low values.)

4. (25 pts) Given an undirected graph \(G = (V, E) \), an orientation of \(G \) is an assignment of direction to each edge. (In general, a graph has many orientations, each yielding a directed graph.) We say that a legitimate orientation \(O \) of \(G \) is one with the property that if there was an undirected path from \(u \) to \(v \) in \(G \), then there is a directed path from \(u \) to \(v \) and also from \(v \) to \(u \) in the oriented graph.

 (a) Characterize the class of undirected graphs having legitimate orientations. Prove that your characterization is correct.

 (b) Provide an algorithm that, given an undirected graph, finds a legitimate orientation of it, or if none exists, determines so.

5. (Ungraded.) Give an example of a weighted connected undirected graph \(G = (V, E) \) and a vertex \(v \in V \) such that the MST of \(G \) is necessarily very different from a shortest-path tree rooted at \(v \). Can the two trees be completely disjoint? (Recall that a shortest-path tree is the union over all \(u \) of a shortest path from \(v \) to \(u \).)