1. (15 pts) Suppose there are n trading posts along a river. At any of the posts, you can rent a canoe to be returned at any other post downstream. (It is impossible to paddle against the current.) For each possible departure point i and each possible arrival point j, the cost of taking a rental from i to j is known. However, it can happen that the cost of renting from i to j is higher than the total cost of a series of shorter rentals. In this case, you can return the first canoe at some post k between i and j and continue your journey in a second canoe. There is no extra charge for changing canoes this way. Give an efficient algorithm to determine the minimum cost of a trip by canoe from each possible departure point i to each possible arrival point j. In terms of n, how much time is needed by your algorithm?

2. (15 pts) Recall the Knapsack problem in which you are given n items, each item i with a nonnegative weight w_i and a distinct value v_i. You are interested in finding the subset S of maximum value $\sum_{i \in S} v_i$ whose weight $\sum_{i \in S} w_i$ does not exceed budget W. In class, we saw how to find the maximum value achievable by any subset. Design an $O(nW)$-time algorithm to construct the set S of maximum value.

3. (15 pts) Suppose you have n boys and n girls, each of whom specifies a set of K friends of the opposite gender with whom they are willing to attend the high school dance. Prove that it is always possible to find a matching between boys and girls such that everyone goes with one of their friends. (In this problem, one-sided friendships do not exist.)

4. (15 pts) Given a string of characters $c_1 \ldots c_n$, we say that a substring $c_i \ldots c_j$ for $1 \leq i \leq j \leq n$ is a palindrome if it reads the same forward and backwards. For example, “abacaba” is a palindrome. Give an $O(n^2)$-time algorithm to find the longest palindrome substring in the input string $c_1 \ldots c_n$.

5. (20 pts) You are given a rectangular piece of cloth with dimensions $X \times Y$, where X and Y are positive integers, and a list of n types of products that can be made using the cloth. For each product type i, you know that a rectangle of cloth of dimensions $a_i \times b_i$ is needed and that the selling price of the product is c_i. Assume that a_i, b_i and c_i are all positive integers. You have a machine that can cut any rectangular piece of cloth into two pieces either horizontally or vertically.

Design an algorithm that determines the best return on the $X \times Y$ piece of cloth, that is, a strategy for cutting the cloth so that the products made from the resulting pieces give the maximum sum of selling prices. You are free to make as many copies
of a given product as you wish, or none, if desired. You may find the following hints helpful:

(a) First, prove that w.l.o.g., cuts are made only on integer boundaries.
(b) Develop a recurrence for the maximum return that can be obtained from a cloth of arbitrary integral dimension $i \times j$. (The natural thought would be: we either use the cloth for a single copy of a product, or . . .)
(c) Use this recurrence to design the algorithm.