25.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve the all-pairs shortest-paths problem on a directed graph \(G = (V, E) \). The resulting algorithm, known as the **Floyd-Warshall algorithm**, runs in \(\Theta(V^3) \) time. As before, negative-weight edges may be present, but we assume that there are no negative-weight cycles. As in Section 25.1, we shall follow the dynamic-programming process to develop the algorithm. After studying the resulting algorithm, we shall present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we use a different characterization of the structure of a shortest path than we used in the matrix-multiplication-based all-pairs algorithms. The algorithm considers the “intermediate” vertices of a shortest path, where an **intermediate** vertex of a simple path \(p = (v_1, v_2, \ldots, v_l) \) is any vertex of \(p \) other than \(v_1 \) or \(v_l \), that is, any vertex in the set \(\{v_2, v_3, \ldots, v_{l-1}\} \).

The Floyd-Warshall algorithm is based on the following observation. Under our assumption that the vertices of \(G \) are \(V = \{1, 2, \ldots, n\} \), let us consider a subset \(\{1, 2, \ldots, k\} \) of vertices for some \(k \). For any pair of vertices \(i, j \in V \), consider all paths from \(i \) to \(j \) whose intermediate vertices are all drawn from \(\{1, 2, \ldots, k\} \), and let \(p \) be a minimum-weight path from among them. (Path \(p \) is simple.) The Floyd-Warshall algorithm exploits a relationship between path \(p \) and shortest paths from \(i \) to \(j \) with all intermediate vertices in the set \(\{1, 2, \ldots, k-1\} \). The relationship depends on whether or not \(k \) is an intermediate vertex of path \(p \).

- **If** \(k \) is not an intermediate vertex of path \(p \), then all intermediate vertices of path \(p \) are in the set \(\{1, 2, \ldots, k-1\} \). Thus, a shortest path from vertex \(i \) to vertex \(j \) with all intermediate vertices in the set \(\{1, 2, \ldots, k-1\} \) is also a shortest path from \(i \) to \(j \) with all intermediate vertices in the set \(\{1, 2, \ldots, k\} \).

- **If** \(k \) is an intermediate vertex of path \(p \), then we break \(p \) down into \(i \overset{p_1}{\rightarrow} k \overset{p_2}{\rightarrow} j \) as shown in Figure 25.3. By Lemma 24.1, \(p_1 \) is a shortest path from \(i \) to \(k \) with all intermediate vertices in the set \(\{1, 2, \ldots, k\} \). Because vertex \(k \) is not an intermediate vertex of path \(p_1 \), we see that \(p_1 \) is a shortest path from \(i \) to \(k \) with all intermediate vertices in the set \(\{1, 2, \ldots, k-1\} \). Similarly, \(p_2 \) is a shortest path from vertex \(k \) to vertex \(j \) with all intermediate vertices in the set \(\{1, 2, \ldots, k-1\} \).
all intermediate vertices in \(\{1, 2, \ldots, k-1\} \) all intermediate vertices in \(\{1, 2, \ldots, k-1\} \)

\[p_1 \quad \rightarrow \quad k \quad \rightarrow \quad p_2 \]

\[\rightarrow \quad i \rightarrow \quad \rightarrow \quad p \quad \rightarrow \quad j \]

\[p: \text{all intermediate vertices in } \{1, 2, \ldots, k\} \]

Figure 25.3 Path \(p \) is a shortest path from vertex \(i \) to vertex \(j \), and \(k \) is the highest-numbered intermediate vertex of \(p \). Path \(p_1 \), the portion of path \(p \) from vertex \(i \) to vertex \(k \), has all intermediate vertices in the set \(\{1, 2, \ldots, k-1\} \). The same holds for path \(p_2 \) from vertex \(k \) to vertex \(j \).

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortest-path estimates that is different from the one in Section 25.1. Let \(d_{ij}^{(k)} \) be the weight of a shortest path from vertex \(i \) to vertex \(j \) for which all intermediate vertices are in the set \(\{1, 2, \ldots, k\} \). When \(k = 0 \), a path from vertex \(i \) to vertex \(j \) with no intermediate vertex numbered higher than 0 has no intermediate vertices at all. Such a path has at most one edge, and hence \(d_{ij}^{(0)} = w_{ij} \). A recursive definition following the above discussion is given by

\[
d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = 0, \\
 \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \geq 1.
\end{cases}
\]

(25.5)

Because for any path, all intermediate vertices are in the set \(\{1, 2, \ldots, n\} \), the matrix \(D^{(n)} = (d_{ij}^{(n)}) \) gives the final answer: \(d_{ij}^{(n)} - \delta(i, j) \) for all \(i, j \in V \).

Computing the shortest-path weights bottom up

Based on recurrence (25.5), the following bottom-up procedure can be used to compute the values \(d_{ij}^{(k)} \) in order of increasing values of \(k \). Its input is an \(n \times n \) matrix \(W \) defined as in equation (25.1). The procedure returns the matrix \(D^{(n)} \) of shortest-path weights.

FLOYD-WARSHALL(W)

1. \(n \leftarrow \text{rows}[W] \)
2. \(D^{(0)} \leftarrow W \)
3. \(\text{for } k \leftarrow 1 \text{ to } n \)
4. \(\quad \text{do for } i \leftarrow 1 \text{ to } n \)
5. \(\quad \quad \text{do for } j \leftarrow 1 \text{ to } n \)
6. \(\quad \quad \quad \text{do } d_{ij}^{(k)} \leftarrow \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) \)
7. \(\text{return } D^{(n)} \)
\[
\begin{align*}
D^{(0)} &= \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}, &
\Pi^{(0)} &= \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix} \\
D^{(1)} &= \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}, &
\Pi^{(1)} &= \begin{pmatrix}
\text{NIL} & 1 & 1 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\
4 & 1 & 4 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix} \\
D^{(2)} &= \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}, &
\Pi^{(2)} &= \begin{pmatrix}
\text{NIL} & 1 & 1 & 2 & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & 2 & 2 \\
4 & 1 & 4 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix} \\
D^{(3)} &= \begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}, &
\Pi^{(3)} &= \begin{pmatrix}
\text{NIL} & 1 & 1 & 2 & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\
\text{NIL} & 3 & \text{NIL} & 2 & 2 \\
4 & 3 & 4 & \text{NIL} & 1 \\
\text{NIL} & \text{NIL} & \text{NIL} & 5 & \text{NIL}
\end{pmatrix} \\
D^{(4)} &= \begin{pmatrix}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}, &
\Pi^{(4)} &= \begin{pmatrix}
\text{NIL} & 1 & 4 & 2 & 1 \\
4 & \text{NIL} & 4 & 2 & 1 \\
4 & 3 & \text{NIL} & 2 & 1 \\
4 & 3 & 4 & \text{NIL} & 1 \\
4 & 3 & 4 & 5 & \text{NIL}
\end{pmatrix} \\
D^{(5)} &= \begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}, &
\Pi^{(5)} &= \begin{pmatrix}
\text{NIL} & 3 & 4 & 5 & 1 \\
4 & \text{NIL} & 4 & 2 & 1 \\
4 & 3 & \text{NIL} & 2 & 1 \\
4 & 3 & 4 & \text{NIL} & 1 \\
4 & 3 & 4 & 5 & \text{NIL}
\end{pmatrix}
\end{align*}

Figure 25.4 The sequence of matrices \(D^{(k)}\) and \(\Pi^{(k)}\) computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.

Figure 25.4 shows the matrices \(D^{(k)}\) computed by the Floyd-Warshall algorithm for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply nested for loops of lines 3–6. Because each execution of line 6 takes \(O(1)\) time, the algorithm runs in time \(\Theta(n^3)\). As in the final algorithm in Section 25.1, the
code is tight, with no elaborate data structures, and so the constant hidden in the Θ-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths in the Floyd-Warshall algorithm. One way is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix. This method can be implemented to run in $O(n^3)$ time (Exercise 25.1-6). Given the predecessor matrix Π, the PRINT-ALL-PAIRS-SHORTEST-PATH procedure can be used to print the vertices on a given shortest path.

We can compute the predecessor matrix Π "on-line" just as the Floyd-Warshall algorithm computes the matrices $D^{(k)}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(k)}$, where $\Pi = \Pi^{(k)}$ and $\pi^{(k)}_{ij}$ is defined to be the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1, 2, \ldots, k\}$.

We can give a recursive formulation of $\pi^{(k)}_{ij}$. When $k = 0$, a shortest path from i to j has no intermediate vertices at all. Thus,

$$\pi^{(0)}_{ij} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases} \tag{25.6}$$

For $k \geq 1$, if we take the path $i \sim k \sim j$, where $k \neq j$, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. Otherwise, we choose the same predecessor of j that we chose on a shortest path from i with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. Formally, for $k \geq 1$,

$$\pi^{(k)}_{ij} = \begin{cases} \pi^{(k-1)}_{ij} & \text{if } d^{(k-1)}_{ij} \leq d^{(k-1)}_{ik} + d^{(k-1)}_{kj}, \\ \pi^{(k-1)}_{kj} & \text{if } d^{(k-1)}_{ij} > d^{(k-1)}_{ik} + d^{(k-1)}_{kj}. \end{cases} \tag{25.7}$$

We leave the incorporation of the $\Pi^{(k)}$ matrix computations into the FLOYD-WARSHALL procedure as Exercise 25.2-3. Figure 25.4 shows the sequence of $\Pi^{(k)}$ matrices that the resulting algorithm computes for the graph of Figure 25.1. The exercise also asks for the more difficult task of proving that the predecessor subgraph $G_{\pi,i}$ is a shortest-paths tree with root i. Yet another way to reconstruct shortest paths is given as Exercise 25.2-7.

Transitive closure of a directed graph

Given a directed graph $G = (V, E)$ with vertex set $V = \{1, 2, \ldots, n\}$, we may wish to find out whether there is a path in G from i to j for all vertex pairs $i, j \in V$. The **transitive closure** of G is defined as the graph $G^* = (V, E^*)$, where
$E^* = \{(i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}$.

One way to compute the transitive closure of a graph in $\Theta(n^3)$ time is to assign a weight of 1 to each edge of E and run the Floyd-Warshall algorithm. If there is a path from vertex i to vertex j, we get $d_{ij} < n$. Otherwise, we get $d_{ij} = \infty$.

There is another, similar way to compute the transitive closure of G in $\Theta(n^3)$ time that can save time and space in practice. This method involves substitution of the logical operations \lor (logical OR) and \land (logical AND) for the arithmetic operations \min and $+$ in the Floyd-Warshall algorithm. For $i, j, k = 1, 2, \ldots, n$, we define $t_{ij}^{(k)}$ to be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set $\{1, 2, \ldots, k\}$, and 0 otherwise. We construct the transitive closure $G^* = (V, E^*)$ by putting edge (i, j) into E^* if and only if $t_{ij}^{(k)} = 1$. A recursive definition of $t_{ij}^{(k)}$, analogous to recurrence (25.5), is

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E, \\ 1 & \text{if } i = j \text{ or } (i, j) \in E, \end{cases}$$

and for $k \geq 1$,

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}).$$ (25.8)

As in the Floyd-Warshall algorithm, we compute the matrices $T^{(k)} = (t_{ij}^{(k)})$ in order of increasing k.

TRANSITIVE-CLOSURE(G)
1 $n \leftarrow |V[G]|$
2 for $i \leftarrow 1$ to n
3 do for $j \leftarrow 1$ to n
4 do if $i = j$ or $(i, j) \in E[G]$
5 then $t_{ij}^{(0)} \leftarrow 1$
6 else $t_{ij}^{(0)} \leftarrow 0$
7 for $k \leftarrow 1$ to n
8 do for $i \leftarrow 1$ to n
9 do for $j \leftarrow 1$ to n
10 do $t_{ij}^{(k)} \leftarrow t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)})$
11 return $T^{(n)}$

Figure 25.5 shows the matrices $T^{(k)}$ computed by the TRANSITIVE-CLOSURE procedure on a sample graph. The TRANSITIVE-CLOSURE procedure, like the Floyd-Warshall algorithm, runs in $\Theta(n^3)$ time. On some computers, though, logical operations on single-bit values execute faster than arithmetic operations on integer words of data. Moreover, because the direct transitive-closure algorithm uses only boolean values rather than integer values, its space requirement is less than the
Floyd-Warshall algorithm’s by a factor corresponding to the size of a word of computer storage.

Exercises

25.2.1
Run the Floyd-Warshall algorithm on the weighted, directed graph of Figure 25.2. Show the matrix $D^{(k)}$ that results for each iteration of the outer loop.

25.2.2
Show how to compute the transitive closure using the technique of Section 25.1.

25.2.3
Modify the FLOYD-WARSHALL procedure to include computation of the $\Pi^{(k)}$ matrices according to equations (25.6) and (25.7). Prove rigorously that for all $i \in V$, the predecessor subgraph $G_{\pi,i}$ is a shortest-paths tree with root i. \textit{(Hint: To show that $G_{\pi,i}$ is acyclic, first show that $\pi_{ij}^{(k)} = l$ implies $d_{ij}^{(k)} \geq d_{il}^{(k)} + w_{lj}$, according to the definition of $\pi_{ij}^{(k)}$. Then, adapt the proof of Lemma 24.16.)}

25.2.4
As it appears above, the Floyd-Warshall algorithm requires $\Theta(n^3)$ space, since we compute $d_{ij}^{(k)}$ for $i, j, k = 1, 2, \ldots, n$. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta(n^2)$ space is required.
Chapter 25 All-Pairs Shortest Paths

Figure 25.1 A directed graph and the sequence of matrices $L^{(m)}$ computed by SLOW-ALL-PAIRS-SHORTEST-PATHS. The reader may verify that $L^{(5)} = L^{(4)}$, W is equal to $L^{(4)}$, and thus $L^{(m)} = L^{(4)}$ for all $m \geq 4$.

\[
L^{(1)} = \begin{pmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(2)} = \begin{pmatrix}
0 & 3 & 8 & 2 & -4 \\
3 & 0 & -4 & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & \infty & 1 & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(3)} = \begin{pmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(4)} = \begin{pmatrix}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0 \\
\end{pmatrix}
\]

\[
L^{(2 \lceil \lg(n-1) \rceil)} = W^{2 \lceil \lg(n-1) \rceil} = W^{2 \lceil \lg(n-1) \rceil - 1} W^{2 \lceil \lg(n-1) \rceil - 1}
\]

Since $2 \lceil \lg(n-1) \rceil \geq n - 1$, the final product $L^{(2 \lceil \lg(n-1) \rceil)}$ is equal to $L^{(n-1)}$.

The following procedure computes the above sequence of matrices by using this technique of repeated squaring.