1. (Easy.)
 a Define the class \(P \).
 b Define the class \(NP \).

2. (Easy-Medium.) In the Set Cover problem, you are given a set \(U \) of ground elements \(e_1, e_2, \ldots, e_n \). You are also given a set \(S \) consisting of \(m \) subsets \(S_1, S_2, \ldots, S_m \) of \(U \). Given a positive integer \(k \), is it possible to select at most \(k \) subsets from \(S \) so that every element \(e_i \) from \(i = 1, \ldots, n \) is contained in at least one selected subset? I.e., is there a set of at most \(k \) subsets whose union covers \(U \)? Prove that Set Cover is NP-Complete. You may want to consider giving a reduction from Vertex Cover.

3. (Easy-Medium, from Quiz 2.) Suppose you want to hike from village \(V_1 \) to village \(V_N \) in \(K \) days. There are a number of intermediate villages along the way where you can stay overnight. Let \(d(i, i+1) \) denote the distance between villages \(V_i \) and \(V_{i+1} \). The goal is to minimize the maximum amount of walking you have to do in a single day.

 For example, consider the situation in which you need to go from \(V_1 \) to \(V_7 \) in 3 days (see figure). If you stop at \(V_3 \) and \(V_5 \), then on day 1, you walk from \(V_1 \) to \(V_3 \) (10 miles), on day 2 you walk from \(V_3 \) to \(V_5 \) (12 miles) and on day 3, you walk from \(V_5 \) to \(V_7 \) (9 miles). Then the maximum distance walked per day is 12 miles. A better solution is to walk from \(V_1 \) to \(V_4 \) on the first day (11 miles), from \(V_4 \) to \(V_5 \) on day 2 (11 miles) and \(V_5 \) to \(V_7 \) on day 3 (9 miles): the maximum distance walked per day is only 11 miles.

 Design a dynamic programming algorithm to minimize the maximum amount of walking in a single day. No proof required, but give time complexity and explain your recurrence.

4. (Medium-Hard.) Say you have access to a function \(\text{DICT} \) that returns true if its input is a valid English word, and false otherwise. We are given as input a sentence from which the punctuation has been stripped (for example, “dynamicprogrammingisfabulous”). Assuming calls to \(\text{DICT} \) take constant time, give an \(O(n^2) \) time algorithm to determine whether an input string of length \(n \) can be split into a sequence of valid words.
5. (Medium.) In the famous Traveling Salesman Problem (TSP), a salesman must visit \(n \) cities labeled \(v_1, v_2, \ldots, v_n \). The salesman starts in city \(v_1 \), his home, and wants to find a tour, i.e., an order in which to visit all the other cities and return home. Formally, given a set of distances of \(n \) cities, and a bound \(D \), is there a tour of length at most \(D \)? Distances are non-negative and need not be symmetric. Prove that TSP is NP-complete.

6. (Hard.) (Adapted from KT, p. 412) Suppose you have \(n \) doctors at a hospital who need to collectively cover the vacation days over the next year. There are \(k \) vacation periods, each spanning several contiguous days. Let \(D_j \) be the set of days included in the \(j \)th vacation period. Each doctor \(i \) has a set \(S_i \) of days when he or she can work; these availabilities need not form a contiguous time period, even within a single vacation period. For a fixed \(c \), each doctor should be assigned to work at most \(c \) vacation days total, and only on days when he or she is available. Also, for each vacation period \(j \), each doctor should be assigned to work at most one of the days in the set \(D_j \). Give a polynomial-time algorithm that determines whether it is possible to validly assign a single doctor to each vacation day and still cover every vacation day.