Owicki-Gries Logic

Sources

Concurrency

The Hoare Logic we have studied so far only considers sequential programs. How does concurrency affect the framework?

To study this question we will:

- add a construct to the programming language for spawning threads, and
- study the impact this has on the proof rules for Hoare triples.

The new logic is often called *Owicki-Gries Logic*, after the researchers who developed the idea.
The `cobegin` Statement

... introduces concurrency into GC. It has following form.

\[
\text{cobegin } S_1 \parallel S_2 \parallel \ldots \parallel S_n \text{ coend}
\]

- Each \(S_i \) can have a label, \(L_i \) (prepended to the statement using double colons ::).
- Control is concurrently enabled at each of the \(S_i \)'s; after all have terminated, the construct is exited and a single thread of control re-established.
- Shared memory!
- We will call the extended language \(PGC \) (Parallel GC).
Owicki-Gries Logic Verification Framework: Sys

Adding `cobegin... coend` to the programming notation alters `Sys`, so we must reopen the issue of program semantics.
Subtleties in the Semantics of \(\text{cobegin} \)

In sequential programming the following are equivalent.

\[
\begin{align*}
y &:= x; \\
x, y &:= x+1, x \\
x &:= y+1 \\
S_1 &
\end{align*}
\]

\[
\begin{align*}
y &:= y+1 \\
S_2 &
\end{align*}
\]

(Here “equivalent” means \([S_1] = [S_2]\).) But what happens if they are substituted for \(S\) in

\[
\text{cobegin } S \parallel y := y+1 \text{ coend}
\]

Moral In concurrent programming, issues of *atomicity* and *nondeterminism* must be factored into semantics.

\(\Rightarrow \) Existing semantics of programming language must be changed!
Fix S to be the set of PGC statements (possibly containing occurrences of `cobegin`).

The new semantics will be given in an SOS transition ("small-step") style, as a relation $\rightarrow \subseteq (S \times \Sigma) \times (\Sigma \cup (S \times \Sigma))$.

Intuition \rightarrow captures a notion of "atomic execution step":

- $\langle S, \sigma \rangle \rightarrow \langle S', \sigma' \rangle$ if in state σ, S can engage in one execution step and then behave like S', with the state changing from σ to σ'.
- $\langle S, \sigma \rangle \rightarrow \sigma'$ if S can terminate in one step, with the state changing to σ'.

How do we define \rightarrow? Using inference rules, just as we did for the evaluation semantics of PC.
Rules for \rightarrow

$$\langle \text{skip}, \sigma \rangle \rightarrow \sigma$$

$$k_1 = \lfloor e_1 \rfloor_{AE}(\sigma) \quad \ldots \quad k_n = \lfloor e_n \rfloor_{AE}(\sigma)$$

$$\langle v_1, \ldots, v_n := e_1, \ldots e_n, \sigma \rangle \rightarrow \sigma[v_1 \mapsto k_1, \ldots, v_n \mapsto k_n]$$

$$\langle S_1, \sigma \rangle \rightarrow \sigma'$$

$$\langle S_1; S_2, \sigma \rangle \rightarrow \langle S_2, \sigma' \rangle$$

$$\langle S_1, \sigma \rangle \rightarrow \langle S_1', \sigma' \rangle$$

$$\langle S_1; S_2, \sigma \rangle \rightarrow \langle S_1'; S_2, \sigma' \rangle$$
Rules for \rightarrow (cont.)

\[
\begin{align*}
\sigma &\models_{BE} G_i \\
\langle \text{if } G_1 \to S_1 \cdots \cdots G_n \to S_n \; \text{fi}, \sigma \rangle &\rightarrow \langle S_i, \sigma \rangle
\end{align*}
\]

\[
\begin{align*}
\sigma &\not\models_{BE} G_1 \cdots \sigma \not\models_{BE} G_n \\
\langle \text{do } G_1 \to S_1 \cdots \cdots G_n \to S_n \; \text{od}, \sigma \rangle &\rightarrow \sigma
\end{align*}
\]

\[
\begin{align*}
\sigma &\models_{BE} G_i \\
\langle \text{do } G_1 \to S_1 \cdots \cdots G_n \to S_n \; \text{od}, \sigma \rangle &\rightarrow \langle S_i; \; \text{do } G_1 \to S_1 \cdots \cdots G_n \to S_n \; \text{od}, \sigma \rangle
\end{align*}
\]
Rules for \rightarrow (cont.)

\[\langle S, \sigma \rangle \rightarrow \sigma' \]

\[\langle \text{cobegin } S \text{ coend}, \sigma \rangle \rightarrow \sigma' \]

\[n \geq 2 \quad \langle S_i, \sigma \rangle \rightarrow \sigma' \]

\[\langle \text{cobegin } S_1 \parallel \cdots \parallel S_{i-1} \parallel S_i \parallel S_{i+1} \parallel \cdots \parallel S_n \text{ coend}, \sigma \rangle \rightarrow \]
\[\langle \text{cobegin } S_1 \parallel \cdots \parallel S_{i-1} \parallel S_{i+1} \parallel \cdots \parallel S_n \text{ coend}, \sigma' \rangle \]

\[\langle S_i, \sigma \rangle \rightarrow \langle S'_i, \sigma' \rangle \]

\[\langle \text{cobegin } S_1 \parallel \cdots \parallel S_{i-1} \parallel S_i \parallel S_{i+1} \parallel \cdots \parallel S_n \text{ coend}, \sigma \rangle \rightarrow \]
\[\langle \text{cobegin } S_1 \parallel \cdots \parallel S_{i-1} \parallel S'_i \parallel S_{i+1} \parallel \cdots \parallel S_n \text{ coend}, \sigma' \rangle \]

Note This semantics models concurrency as *interleaving* of atomic execution steps in the individual threads.
Owicki-Gries Logic: Spec and sat

The set \textit{Spec} of specifications will remain unchanged: precondition/postcondition pairs. What about $\textit{sat} \subseteq \textit{Sys} \times \textit{Spec}$?

Definition Program S satisfies specification $\langle P, Q \rangle$ if for every $\sigma, \sigma' \in \Sigma$ such that $\sigma \models P$ and $\langle S, \sigma \rangle \rightarrow^* \sigma'$, $\sigma' \models Q$.

Aside (Transitive and Reflexive Closure) What is \rightarrow^*?

- Let $R \subseteq T \times U$ be a binary relation, with $T \subseteq U$.
- Then $R^* \subseteq T \times U$, the reflexive and transitive closure of R, defined as follows.
 - $t R^* t$ for all $t \in T$.
 - If $t R t'$ and $t' R^* u$, then $t R^* u$.

Idea: $t R^* u$ holds if t can reach u via a “sequence” of R steps: $t \equiv t_1 R \cdots R t_n \equiv u$.

Aside (Full Abstraction) What is the relationship between \Rightarrow and \rightarrow? Suppose S is a GC program (i.e. no cobegin). Then for any $\sigma, \sigma' \in \Sigma$:

$\langle S, \sigma \rangle \Rightarrow \sigma'$ iff $\langle S, \sigma \rangle \rightarrow^* \sigma'$
Because of full abstraction, all the old Hoare Logic inference rules remain valid!

We need to add a rule for \texttt{cobegin}...\texttt{coend}. The following is due to Owicki and Gries.

\[
\begin{aligned}
\{P_1\} S_1 \{Q_1\} \cdots \{P_n\} S_n \{Q_n\} & \quad \text{interference freedom} \\
\{P_1 \land \cdots \land P_n\} \texttt{cobegin} S_1 \parallel \cdots \parallel S_n \texttt{coend} \{Q_1 \land \cdots \land Q_n\} & \quad \text{(cobegin)}
\end{aligned}
\]
... a property of the proofs of the $\{P_i\} S_i \{Q_i\}$

- Suppose we have a proof for $\{P_i\} S_i \{Q_i\}$.

- Interference-freedom requires proving that the execution of statement in another S_j does not invalidate the reasoning used in the proof of $\{P_i\} S_i \{Q_i\}$.
The conclusion $x = 1$ is bogus!

But the individual reasoning of each parallel statement is fine!

Executing one assignment to x invalidates all the state predicates ($x = 0, x + 1 = 1$) preceding the other! This phenomenon is called interference; correct proofs must avoid it.
Formalizing Interference-Freedom

... turns out to be somewhat tricky.

- Interference-freedom is a property of proofs, not Hoare triples.
- Identifying which parts of a proof need to be considered requires some effort.

To cope with these issues, we will do the following.

- Define the notion of normalized proof outline, which is like a proof outline but with only one predicate before every statement and one predicate at end.
- Define interference-freedom using normalized proof outlines.
Normalized Proof Outlines

... like proof outlines, but with exactly one state predicate before each statement and at end.

Example

\{
\tt
\}
\begin{align*}
x &:= 0; \\
\{x = 0\}
\end{align*}
\begin{align*}
\text{cobegin} \\
\{x = 0\} \{x + 1 = 1\} \\
x &:= x + 1 \\
\{x = 1\}
\end{align*}
\begin{align*}
\parallel \{x = 0\} \{x + 1 = 1\} \\
x &:= x + 1 \\
\{x = 1\}
\end{align*}
\begin{align*}
\text{coend} \\
\{x = 1\}
\end{align*}
Facts about Normalized Proof Outlines

Definition
Let N_S be a normalized proof outline for statement S.

1. If S' is a statement in S, then let $\text{pre}(N_S, S')$ and $\text{post}(N_S, S')$ be the state predicates immediately preceding and following S', respectively. Write $\text{pre}(N_S)$ for $\text{pre}(N_S, S)$ and $\text{post}(N_S)$ for $\text{post}(N_S, S)$.

2. N_S is valid if for every statement S' in S, the Hoare triple $\{\text{pre}(N_S, S')\} S' \{\text{post}(N_S, S')\}$ is valid.

Fact

1. Let S be a cobegin-free program. Then $\{P\} S \{Q\}$ is valid if and only if there is a valid normalized proof outline N_S for S with $\text{pre}(N_S) = P$ and $\text{post}(N_S) = Q$.

2. Every valid normalized proof outline may be converted into a (full) proof outline.
Interference-Freedom and Normalized Proof Outlines

Recall the \((\text{cobegin})\) rule:

\[
\frac{\{P_1\} S_1 \{Q_1\} \cdots \{P_n\} S_n \{Q_n\}}{\{P_1 \wedge \cdots \wedge P_n\} \text{cobegin } S_1 \parallel \cdots \parallel S_n\text{ coend } \{Q_1 \wedge \cdots \wedge Q_n\}} \quad \text{(cobegin)}
\]

- Suppose each \(S_i\) has a normalized proof outline \(N_{S_i}\).

- \(N_{S_i}\) is \textit{interference-free} with respect to proof outline \(N_{S_j}\) \((i \neq j)\) if for each statement \(S'_i\) in \(S_i\) and \(S'_j\) in \(S_j\):

\[
\{\text{pre}(N_{S_i}, S'_i) \wedge \text{pre}(N_{S_j}, S'_j)\} S'_i \{\text{pre}(N_{S_i}, S'_i)\}
\]

\[
\{\text{post}(N_{S_i}, S'_i) \wedge \text{pre}(N_{S_j}, S'_j)\} S'_j \{\text{post}(N_{S_i}, S'_i)\}
\]

The \(N_{S_1}, \ldots, N_{S_n}\) are interference free if they are pairwise interference free with respect to one other.

- So applying the \((\text{cobegin})\) rule requires the development of interference-free normalized proof outlines for the \(S_i\)!

- In proving interference-freedom of \(N_{S_i}\) with respect to \(N_{S_j}\), can limit our attention to:
 - Preconditions of each statement in \(S_i\), and postcodition of \(N_{S_i}\)
 - Assignment statements in \(S_j\)
Example Revisited

\[
\{ \text{tt} \} \\
x := 0; \\
\{ x = 0 \} \\
\text{cobegin} \\
\{ x = 0 \} \\
x := x + 1 \\
\{ x = 1 \} \\
\parallel \{ x = 0 \} \\
x := x + 1 \\
\{ x = 1 \} \\
\text{coend} \\
\{ x = 1 \}
\]

Interference-freedom is violated because the following Hoare triple is not valid:

\[
\{ x = 0 \land x = 0 \} \ x := x + 1 \ \{ x = 0 \}
\]
Another Example

We want to prove:

\[
\{ \text{bal} = B \land \text{amt} > 0 \} \\
S \\
\{ \text{bal} = B + \text{amt} \land \text{amt} > 0 \land (\text{credit} = 1 \Rightarrow \text{bal} > 1000) \}
\]

where \(S \) is given below.

\[
\begin{align*}
\text{cobegin} \\
& \quad S_{\text{amt}} :: \quad \text{bal} := \text{bal} + \text{amt} \\
\parallel & \quad S_{\text{cred}} :: \quad \text{if} \\
& \quad \quad \quad \text{bal} > 1000 \rightarrow \text{credit} := 1 \\
& \quad \quad \quad \text{bal} \leq 1000 \rightarrow \text{credit} := 0 \\
\text{fi} \\
\text{coend}
\end{align*}
\]
Proof of Example

We do the proof as follows.

1. Give valid normalized proof outline for
 \[\{ \text{bal} = B \land \text{amt} > 0 \} \text{S}_{\text{amt}} \{ \text{bal} = B + \text{amt} \land \text{amt} > 0 \} \]

2. Give valid normalized proof outline for
 \[\{ \text{tt} \} \text{S}_{\text{cred}} \{ \text{credit} = 1 \Rightarrow \text{bal} > 1000 \} \]

3. Use \texttt{cobegin} rule to infer desired result.

 Outline for \text{S}_{\text{amt}}

 \[\{ \text{bal} = B \land \text{amt} > 0 \} \]
 \[\text{bal} \ := \ \text{bal} \ + \ \text{amt} \]
 \[\{ \text{bal} = B + \text{amt} \land \text{amt} > 0 \} \]

©2015 Rance Cleaveland. All rights reserved.
Outline for S_{cred}

{tt}
if
 bal > 1000 →
 {bal > 1000}
 credit := 1
 {credit = 1 ⇒ bal > 1000}
 fi
 bal ≤ 1000 →
 {tt}
 credit := 0
 {credit = 1 ⇒ bal > 1000}
fi
{credit = 1 ⇒ bal > 1000}
Applying \texttt{cobegin}

To apply \texttt{(cobegin)} we need to prove \textit{non-interference}. For convenience, define the following.

\begin{align*}
\mathcal{D}_1 &= (\text{bal} = B) \land (\text{amt} > 0) \\
\mathcal{D}_2 &= (\text{bal} = B + \text{amt}) \land (\text{amt} > 0) \\
\mathcal{C}_1 &= \text{tt} \\
\mathcal{C}_2 &= \text{bal} > 1000 \\
\mathcal{C}_3 &= \text{credit} = 1 \Rightarrow \text{bal} > 1000
\end{align*}

\(\mathcal{D}_1, \mathcal{D}_2\) are state predicates in outline for \(S_{\text{amt}}\); \(\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3\) are those for \(S_{\text{cred}}\).

To prove non-interference we must establish, for all \(1 \leq i \leq 2\) and \(1 \leq j \leq 3\):

1. \(\{C_j \land D_1\} \text{ bal} := \text{bal} + \text{amt} \{C_j\}\)
2. \(\{D_i \land C_2\} \text{ credit} := 1 \{D_i\}\)
3. \(\{D_i \land C_1\} \text{ credit} := 0 \{D_i\}\)

7 proof obligations!
Most are vacuously true, however.

- Triples of types (2) and (3) hold because no D_i mentions variable credit.
- Assertion C_1 is true in all states and hence cannot be invalidated.

Consequently, to complete the proof of non-interference we must prove:

- $\{C_2 \land D_1\} \text{bal} := \text{bal} + \text{amt} \{C_2\}$
- $\{C_3 \land D_1\} \text{bal} := \text{bal} + \text{amt} \{C_3\}$
Proving Interference-Freedom: \(\{C_2 \land D_1\} \) \(\text{bal} := \text{bal} + \text{amt} \) \(\{C_2\} \)

\(\{(\text{bal} > 1000) \land (\text{bal} = B) \land (\text{amt} > 0)\} \)
\(\{\text{bal} > 1000 \land \text{amt} > 0\} \)
\(\{\text{bal} + \text{amt} > 1000\} \)
\(\text{bal} := \text{bal} + \text{amt} \)
\(\{\text{bal} > 1000\} \)
Proving Interference-Freedom: \(\{C_3 \land D_1\} \, \text{bal} := \text{bal} + \text{amt} \, \{C_3\} \)

\[
\{(\text{credit} = 1 \Rightarrow \text{bal} > 1000) \land (\text{bal} = B) \land (\text{amt} > 0)\} \\
\{\text{credit} = 1 \Rightarrow \text{bal} + \text{amt} > 1000\} \\
\text{bal} := \text{bal} + \text{amt} \\
\{\text{credit} = 1 \Rightarrow \text{bal} > 1000\} \\
\]

QED!
• If S_{amt} had been a withdrawal transaction, the assignment statement would have been

$$bal := bal - amt$$

and the last step of the non-interference proof would not have gone through.

• Postcondition does \textit{not} say that credit denial implies a balance of 1000 or less, so a program that never grants credit would satisfy the given specification! I.e. we could change S_{cred} to

$$credit := 0$$

and still conduct a proof of the same Hoare triple.

• We would like for a postcondition of the form

$$\left((credit = 1 \Rightarrow bal > 1000) \land (credit = 0 \Rightarrow bal \leq 1000)\right)$$

But this would lead to a violation of interference freedom. Why?
Soundness and Completeness

Theorem (Soundness) If \(\{P\} S \{Q\}\) is provable using the proof rules seen so far then \(S\) satisfies specification \(\langle P, Q \rangle \).

What about completeness?

- Completeness does not hold.
- Neither does *relative completeness*!
Incompleteness

Theorem The following valid Hoare triple cannot be proved using the rules given so far.

\[
\{\text{tt}\} \quad \text{cobegin} \quad x := x + 2 \quad \parallel \quad x := 0 \quad \text{coend} \quad \{x = 0 \lor x = 2\}
\]

Proof By contradiction. Suppose there were such a proof. Then there would be \(Q, R\) such that

\[
\{\text{tt}\} \quad x := x + 2 \quad \{Q\} \\
\{\text{tt}\} \quad x := 0 \quad \{R\} \\
Q \land R \quad \Rightarrow \quad x = 0 \lor x = 2
\]

By \((:=)\), \(tt \Rightarrow Q^x_{x+2}\) holds, and hence \(Q\) does also. Similarly, \(R^x_0\) holds. By \((\text{cobegin})\), \(\{R \land \text{tt}\} \quad x := x + 2 \quad \{R\}\) holds, meaning \(R \Rightarrow R^x_{x+2}\) is valid. But then by induction, \(\forall x. (x \geq 0 \land \text{even}(x)) \Rightarrow R\) is true. Since \(Q \land R \Rightarrow x = 0 \lor x = 2\), it now follow that \(\forall x. (x \geq 0 \land \text{even}(x)) \Rightarrow (x = 0 \lor x = 2)\), which is a contradiction: there are positive even integers other than 0 or 2.
We have just showed that for every interference-free proof outline of form:

\[
\begin{align*}
\{tt\} & \\
cobegin & \\
\{tt\} x := x + 2 \{Q\} & \\
\| & \\
\{tt\} x := 0 \{R\} & \\
coend & \\
\{Q \land R\} & \\
\end{align*}
\]

\(R\) must hold for all even, positive \(x\).

- \(R\) must hold after execution of \(x := 0\).
- \(R\) must also hold both before and after execution of \(x := x + 2\).

What is needed is the capability in \(R\) to say that \textit{until} \(x := x + 2\) fires, \(x = 0\) holds. This can be done using \textit{auxiliary variables}.
Auxiliary Variables

... variables that are put into a program just to reason about progress in other processes.

done := 0;
cobegin
 x, done := x+2, 1
∥ x := 0
coen

• done is auxiliary: it is only assigned to, and not read

• It is 0 when increment to x is pending and 1 when it is completed.

• Proof is now possible!
Normalized Proof Outline Using Auxiliary Variables

\{tt\}
done := 0;
\{done = 0\}
cobegin
 \{done = 0\}
x, done := x+2, 1
 \{tt\}
||
 \{tt\}
x := 0
 \{(x = 0 \lor x = 2) \land (\text{done} = 0 \Rightarrow x = 0)\}
coend
\{x = 0 \lor x = 2\}
Non-interference Proofs

- \{\text{done} = 0 \land \text{tt}\} \ x := 0 \ \{\text{done} = 0\}
- \{\text{tt} \land \text{tt}\} \ x := 0 \ \{\text{tt}\}
- \{\text{tt} \land \text{done} = 0\} \ x, \text{done} := x + 2, 1 \ \{\text{tt}\}
- \{(x = 0 \lor x = 2) \land (\text{done} = 0 \Rightarrow x = 0) \land \text{done} = 0\}
 \{x = 0\}
 \{x + 2 = 2 \land 1 = 1\}
 x, \text{done} := x+2, 1
 \{x = 2 \land \text{done} = 1\}
 \{(x = 0 \lor x = 2) \land (\text{done} = 0 \Rightarrow x = 0)\}
... adding auxiliary variables enables proofs to be conducted

... but we don’t want these variables to be in our code!

Fortunately, auxiliary variables can be removed.

\[
\frac{\{P\} S \{Q\} \quad x \text{ not free in } Q \quad x \text{ auxiliary in } S}{\{P\} S' \{Q\}} \quad (\text{aux})
\]

where \(S' \) is \(S \) with all references to \(x \) deleted.

Using (aux), references to done can be removed!

Theorem (Relative Completeness) Adding rules (cobegin) and (aux) to the other Hoare rules yields a relatively complete proof system for the cobegin language.