CMSC 724, Spring 2015: Homework 4
Due Friday April 3, 2015, 11:59pm.

The homework is to be done by yourself. You are free to make reasonable assumptions about the problem if something is not fully specified – make sure to state any assumptions. Try to be concise in your answers. You can turn in a hard copy if you’d like before the deadline (slide under my office door if I am not there). Total weight = 5%.

1. (BIRCH) Briefly explain how BIRCH handles the case when it runs out of memory because of choosing a very small threshold value.

2. (SPRINT) Briefly discuss how the \textit{parallel} version of the SPRINT algorithm can be mapped to MapReduce framework (Section 3).

3. Consider the following history with three transactions that is permitted under Snapshot Isolation:

 \begin{align*}
 R_2(X_0, 0), & \quad R_2(Y_0, 0), \quad R_1(Y_0, 0), \quad W_1(Y_1, 20), \quad C_1, \quad R_3(X_0, 0), \quad R_3(Y_1, 20), \quad C_3, \quad W_2(X_2, -11), \quad C_2
 \end{align*}

 \textit{T}_1 \text{ simply deposits $20 into one account (Y), } \textit{T}_2 \text{ withdraws $10 from the account X and is forced to pay a $1 overdraft fee (because there is not enough money in the two accounts – if there were more than 10 dollars in the two accounts combined, the overdraft fee is not charged), whereas } \textit{T}_3 \text{ simply reads and prints the balances. Explain concisely why this schedule is not serializable. Why would it not be allowed by 2-phase locking? Would OCC allow this schedule?}

4. (Optimistic Concurrency Control) Briefly in your words explain the optimization (what is the optimization, and why is it desired) discussed at the end of Section 4 that is centered around using "\textit{mid tn}".

5. Briefly explain under what circumstance the algorithm by Lehman-Yao will hold 3 locks simultaneously (this is discussed on Page 662).