1. (Credit: HW problem from a class by Avrim Blum and Anupam Gupta at CMU) Given a graph $G = (V, E)$ with $|V| = n$ and $|E| = m$ as usual, we aim here to efficiently find long simple paths (those in which no repeated vertex exists) in G. The length of a path as usual denotes the number of edges in it.

- (Algorithm 1: Very easy.) Show how to find a simple path of length k (if one exists) in time $O(n\Delta^k)$, where Δ as usual denotes the maximum degree. (We will try to do better next.) (5 points)

- (Easy) If G is a DAG (a directed acyclic graph), show that you can deterministically find the longest path in G in $O(m + n)$ time. (7 points)

- (Algorithm 2:) Consider running the following algorithm n times, and outputing the longest path found in these n trials:

 Take a random permutation of the vertices, and direct each edge from the lower endpoint to the higher endpoint to create a DAG H. Find a longest path in H.

Show that there is some constant $c > 0$ such that for $k \leq c\log n / \log \log n$, Algorithm 2 will find a simple path of length k (if one exists) with probability at least $1/2$. (10 points)

- Now consider a slight extension of the last-seen idea. Suppose we have the set $K = \{1, 2, \ldots, k+1\}$ of labels, and we label each vertex with some element of K. A path is called polychromatic if all its vertices get different labels (note that such a path can be of length at most k).

 - Given a labeling, show how to find a polychromatic path of length k (if one exists) in time that is $O(poly(n) \cdot 2^k)$. Note that this run-time is $poly(n)$ if $k \leq O(\log n)$. (9 points)

 - (Algorithm 3:) Consider running the following algorithm n times, and outputing the longest path found in these n trials:

 Take a random labeling of the vertices using K, and output a polychromatic path of length k, if one exists.

Show that there is some constant $c > 0$ such that for $k \leq c\log n$, Algorithm 3 will find a simple path of length k (if one exists) with probability at least $1/2$. (9 points)

2. We are given a bipartite graph $G = (U_1, U_2, E)$ with n vertices in total; each vertex v has a set $S(v)$ of labels given to it. Prove that there is a constant $c > 0$ such that if $|S(v)| \geq c\log_2 n$ for each vertex v, then there exists a choice of label $\ell(v) \in S(v)$ for each vertex v, so that no two adjacent vertices get the same label. (Hint: Let S be the union of all the sets $S(v)$. Start with a random function $f : S \to \{1, 2\}$, and use the fact that $G = (U_1, U_2, E)$ is bipartite.) (15 points)

3. Let $X_1, X_2, \ldots, X_n \in \{0, 1\}$ be random bits that are not necessarily independent; let $X = \sum_i X_i$. Prove that for any pair of integers a, k with $1 \leq k \leq a \leq n$,

$$\Pr[X \geq a] \leq \frac{\sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} E[X_{i_1} X_{i_2} \cdots X_{i_k}]}{{n \choose k}}.$$

As an example, if $n = 4$ and $k = 2$, then the numerator of the r.h.s. is $E[X_1 X_2] + E[X_1 X_3] + E[X_1 X_4] + E[X_2 X_3] + E[X_2 X_4] + E[X_3 X_4]$. (10 points)
4. In both instances below, \(n \) and \(d \) will denote the number of vertices, and average degree, respectively, of a given undirected graph.

It is known that for some constant \(c_0 > 0 \), every graph with no triangles has an independent set of size at least \(c_0 \cdot (n/d) \cdot \log d \). Use this to prove that there is a constant \(c_1 > 0 \) (which depends only on \(c_0 \)) such that the following holds: if graph \(G \) has at most \(\delta d^2 n \) triangles (where \(\delta \) is an arbitrary parameter such that \(1/\sqrt{d} \leq \delta \leq 1 \)), then \(G \) an independent set of size at least \(c_1 \cdot (n/d) \cdot \log(1/\delta) \). (Hint: Use sampling and alteration.) (20 points)

Remarks. A triangle is just a cycle of length 3. Recall that we showed, using random permutations and convexity, that for any graph \(G \) (with \(n \) vertices and average degree \(d \)) has an independent set of size at least \(n/(d+1) \); this is called Turán’s Theorem. What the “\(c_0 \cdot (n/d) \cdot \log d \)” above says that once we have the triangle-freeness condition, we gain a multiplicative factor of \(\Theta(\log d) \). You can always assume that \(d \) is “large enough”, say \(d \geq 4 \); if \(d < 4 \), we can just use Turán’s Theorem and take \(c_0 > 0 \) small enough. The above condition \(\delta \geq 1/\sqrt{d} \) is not strictly necessary, but makes your calculations a bit easier.