CMSC 216 Quiz 1 Worksheet

The first quiz for the course will be on Wed, Feb 10. The following list provides additional information about the quiz:

- Do not post any solutions to this worksheet in Piazza.
- The quiz will be a written quiz (no computer).
- The quiz will be in lab session.
- Closed book, closed notes quiz.
- Answers must be neat and legible.
- Quiz instructions can be found at http://www.cs.umd.edu/~nelson/classes/utilities/examRules.html
- Make sure you know your section number and your TA’s name.
- You must take your quiz in your assigned lab/discussion section and not show up to a random discussion section. We will not grade quizzes taken in the incorrect section.

The following exercises cover the material to be included in this quiz. Solutions to these exercises will not be provided, but you are welcome to discuss your solutions with the TAs or instructors during office hours. It is recommended that you try these exercises on paper first (without using a computer).

Exercises

1. Write a Unix command that will take you to your home directory.

2. Write a Unix command that will copy the folder Week1 present in the lecture_examples folder of the ~/216/public directory to your ~/216 directory of your home directory.

3. What is the size (in bytes) of a char type?

4. What is the output of the following program?

```c
#include <stdio.h>

int main() {
    int x;
    printf("%d\n", x);
    return 0;
}
```

5. Suppose you write a C program and it has an infinite loop; how do you stop the program?

6. What possible problem(s) are associated with the following code fragment?

```c
int x;
scanf("%d", x);
```

7. For this quiz, you will need to provide examples of academic integrity violations. The following is the list you need to know:

 a. Hardcoding of results in a project assignment.
 c. Hiring any online service to complete an assignment for you.
 d. Posting your implementation of any class project on the internet/web.
 e. Discussing projects with your classmates.
 f. Sharing your code or your student tests with any student.
 g. Looking at another student’s code.
8. Does the following code compile? Briefly explain.

```c
#include <stdio.h>

void p1(int x) {
    printf("%d", x);
}

void p1(float x) {
    printf("%d", x);
}

int main() {
    p1(2);
    return 0;
}
```

9. Write a C function that determines whether a positive sequence of integer values provided by the user represent an increasing sequence. For example, 2, 6, 10 represents an increasing sequence. The function will return true if the sequence is increasing and false otherwise. You can assume a negative value will mark the end of the sequence. You may not use arrays for this problem and your function must work for any number of values (not just 3).

10. Define a function named `read_and_compute_prod` that has the prototype below. For this problem:

 - The function computes and returns the product of integer values provided by the user.
 - Use `scanf` to read the values.
 - You don’t need to display any prompt or message as each value is read.
 - The program will stop reading values once the value provided by the user is 0 or if it corresponds to the parameter value (stop). Notice the parameter does not represent the number of values to read; it represents when to stop.
 - The stop value is not part of the product.

 For example, calling `read_and_compute_prod(-1)` will return 54 if we enter the values 2 3 9 0 or the values 2 3 9 -1

```c
int read_and_compute_prod(int stop);
```

11. Define a function named `sum_of_divisibles_by` that has the prototype below. For this problem:

 - The function reads two integer values (lower limit and upper limit) that represent a range. For this problem you can assume the first value will always be lower than or equal to the second.
 - The function computes the sum of values in the range that are divisible by the specified parameter value. Notice that the range includes the lower and upper limit values.
 - The function will display the message "Enter lower and upper limit: " while reading the range values.
 - The following driver and associated output illustrates the functionality expected from the function you need to write. Keep in mind this is just an example (your function must work for different sets of values and not just the ones presented in the example). In the example underlined text is input the user provides and % is the Unix prompt.

 Driver

```c
int main() {
    printf("Sum of divisible by 2: %d\n", sum_of_divisibles_by(2));
    printf("Sum of divisible by 3: %d\n", sum_of_divisibles_by(3));

    return 0;
}
```

 Output

```
$ a.out
Enter lower and upper limit: 2 7
Sum of divisible by 2: 12
Enter lower and upper limit: 2 9
Sum of divisible by 3: 18
```

```c
int sum_of_divisibles_by(int divisible_by);
```